首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment.  相似文献   

2.
An aminopeptidase was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that included diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, gel filtration, and high-performance liquid chromatography over an anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 95,000. The aminopeptidase was capable of degrading several peptides by hydrolysis of the N-terminal amino acid. The peptidase had no endopeptidase or carboxypeptidase activity. The aminopeptidase activity was optimal at pH 7 and 40°C. The enzyme was completely inactivated by the p-chloromecuribenzoate mersalyl, chelating agents, and the divalent cations Cu2+ and Cd2+. The activity that was lost by treatment with the sulfhydryl-blocking reagents was restored with dithiothreitol or β-mercapto-ethanol, while Zn2+ or Co2+ restored the activity of the 1,10-phenantroline-treated enzyme. Kinetic studies indicated that the enzyme has a relatively low affinity for lysyl-p-nitroanilide (Km, 0.55 mM) but that it can hydrolyze this substrate at a high rate (Vmax, 30 μmol/min per mg of protein).  相似文献   

3.
The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys–7-amino-4-methylcoumarin at pH 7 and 37°C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of the pepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.  相似文献   

4.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

5.
A prolyl aminopeptidase (PAP) (EC 3.4.11.5) was isolated from the cell extract of Debaryomyces hansenii CECT12487. The enzyme was purified by selective fractionation with protamine and ammonium sulfate, followed by two chromatography steps, which included gel filtration and anion-exchange chromatography. The PAP was purified 248-fold, with a recovery yield of 1.4%. The enzyme was active in a broad pH range (from 5 to 9.5), with pH and temperature optima at 7.5 and 45°C. The molecular mass was estimated to be around 370 kDa. The presence of inhibitors of serine and aspartic proteases, bestatin, puromycin, reducing agents, chelating agents, and different cations did not have any effect on the enzyme activity. Only iodoacetate, p-chloromercuribenzoic acid, and Hg2+, which are inhibitors of cysteine proteases, markedly reduced the enzyme activity. The Km for proline-7-amido-4-methylcoumarin was 40 μM. The enzyme exclusively hydrolyzed N-terminal-proline-containing substrates. This is the first report on the identification and purification of this type of aminopeptidase in yeast, which may contribute to the scarce knowledge about D. hansenii proteases and their possible roles in meat fermentation.  相似文献   

6.
A tripeptidase from a cell extract of Lactococcus lactis subsp. cremoris Wg2 has been purified to homogeneity by DEAE-Sephacel and phenyl-Sepharose chromatography followed by gel filtration over a Sephadex G-100 SF column and a high-performance liquid chromatography TSK G3000 SW column. The enzyme appears to be a dimer with a molecular weight of between 103,000 and 105,000 and is composed of two identical subunits each with a molecular weight of about 52,000. The tripeptidase is capable of hydrolyzing only tripeptides. The enzyme activity is optimal at pH 7.5 and at 55°C. EDTA inhibits the activity, and this can be reactivated with Zn2+, Mn2+, and partially with Co2+. The reducing agents dithiothreitol and β-mercaptoethanol and the divalent cation Cu2+ inhibit tripeptidase activity. Kinetic studies indicate that the peptidase hydrolyzes leucyl-leucyl-leucine with a Km of 0.15 mM and a Vmax of 151 μmol/min per mg of protein.  相似文献   

7.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45°C both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70°C and had half-lives of 24 and 12 h at 40 and 50°C, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   

8.
A multiheme protein having hydrazine-oxidizing activity was purified from enriched culture from a reactor in which an anammox bacterium, strain KSU-1, was dominant. The enzyme has oxidizing activity toward hydrazine but not hydroxylamine and is a 130-kDa homodimer composed of a 62-kDa polypeptide containing eight hemes. It was therefore named hydrazine-oxidizing enzyme (HZO). With cytochrome c as an electron acceptor, the Vmax and Km for hydrazine are 6.2 ± 0.3 μmol/min · mg and 5.5 ± 0.6 μM, respectively. Hydrazine (25 μM) induced an increase in the proportion of reduced form in the spectrum, whereas hydroxylamine (500 μM) did not. Two genes coding for HZO, hzoA and hzoB, were identified within the metagenomic DNA from the culture. The genes encode the same amino acid sequence except for two residues. The sequences deduced from these genes showed low-level identities (<30%) to those of all of the hydroxylamine oxidoreductases reported but are highly homologous to two hao genes found by sequencing the genome of “Candidatus Kuenenia stuttgartiensis” (88% and 89% identities). The purified enzyme might therefore be a novel hydrazine-oxidizing enzyme having a critical role in anaerobic ammonium oxidation.  相似文献   

9.
Alcohol Dehydrogenase from Methylobacterium organophilum   总被引:7,自引:2,他引:5       下载免费PDF全文
The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum.  相似文献   

10.
A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50°C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu2+. The Michaelis constant (Km) and Vmax for dimethoate were 1.25 mM and 292 μmol min−1 mg of protein−1, respectively.  相似文献   

11.
Ulf St?hl  Bo Ek    Sten Stymne 《Plant physiology》1998,117(1):197-205
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.  相似文献   

12.
Summary d-(–)-Lactate dehydrogenase (LDH) was purified to homogeneity from a cell-free extract ofLactobacillus helveticus CNRZ 32. The native enzyme was determined to have a molecular weight of 152 000 and consisted of four identical subunits of 38 000. This enzyme was NAD dependent fructose 1,6-diphosphate (FDP) and ATP independent. It was most active on pyruvate followed by -hydroxypyruvate as substrates. TheK m values for pyruvate andd-(–)-lactate were 0.64 and 68.42 mM respectively, indicating that the enzyme has a higher affinity for pyruvate. The enzyme activity was completely inhibited byp-chloromercuribenzoate (1 mM) and partially by iodoacetate, suggesting the involvement of the sulfhydryl group (-SH) in catalysis. Optima for activity by the purified enzyme were pH 4.0 and 50–60°C. Limited inhibition ofd-(–)-LDH was observed with several divalent cations. Additionally, HgCl2 was observed to strongly inhibit enzyme activity. The purified enzyme was not affected by dithiothreitol or any of the metal chelating agents examined.  相似文献   

13.
The leucine specific serine proteinase present in the soluble fraction of leaves from Spinacia oleracea L. (called Leu-proteinase) has been purified by acetone precipitation and a combination of gel-filtration, ion exchange, and adsorption chromatography. This enzyme shows a molecular weight of 60,000 ± 3,000 daltons, an isoelectric point of 4.8 ± 0.1, and a relative electrophoretic mobility of 0.58 ± 0.03. The Leu-proteinase catalyzed hydrolysis of p-nitroanilides of N-α-substituted(-l-)amino acids as well as of chromogenic macromolecular substrates has been investigated between pH 5 and 10 at 23 ± 0.5°C and I = 0.1 molar. The enzyme activity is characterized by a bell-shaped profile with an optimum pH value around 7.5, reflecting the acid-base equilibrium of groups with pKa values of 6.8 ± 0.1 and 8.2 ± 0.1 (possibly the histidyl residue present at the active site of the enzyme and the N-terminus group). Among the substrates considered, N-α-benzoyl-l-leucine p-nitroanilide shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 1 × 10−9 molar. In agreement with the enzyme specificity, only N-α-tosyl-l-leucine chloromethyl ketone, di-isopropyl fluorophosphate and phenylmethylsulfonyl fluoride, among compounds considered specific for serine enzymes, strongly inhibit the Leu-proteinase. Accordingly, the enzyme activity is insensitive to cations, chelating agents, sulfydryl group reagents, and activators.  相似文献   

14.
A genomic library of Pseudomonas fluorescens DSM 50106 in a λRESIII phage vector was screened in Escherichia coli K-12 for esterase activity by using α-naphthyl acetate and Fast Blue RR. A 3.2-kb DNA fragment was subcloned from an esterase-positive clone and completely sequenced. Esterase EstF1 was encoded by a 999-bp open reading frame (ORF) and exhibited significant amino acid sequence identity with members of the serine hydrolase family. The deduced amino acid sequences of two other C-terminal truncated ORFs exhibited homology to a cyclohexanone monooxygenase and an alkane hydroxylase. However, esterase activity was not induced by growing of P. fluorescens DSM 50106 in the presence of several cyclic ketones. The esterase gene was fused to a His tag and expressed in E. coli. The gene product was purified by zinc ion affinity chromatography and characterized. Detergents had to be added for purification, indicating that the enzyme was membrane bound or membrane associated. The optimum pH of the purified enzyme was 7.5, and the optimum temperature was 43°C. The showed highest purified enzyme activities towards lactones. The activity increased from γ-butyrolactone (18.1 U/mg) to -caprolactone (21.8 U/mg) to δ-valerolactone (36.5 U/mg). The activities towards the aliphatic esters were significantly lower; the only exception was the activity toward ethyl caprylate, which was the preferred substrate.  相似文献   

15.
Mucor fragilis grown on bovine blood powder as the sole carbon source abundantly produced β-N-acetylhexosaminidase. The enzyme activity was several times higher than that of a culture obtained with glucose medium. The enzyme had two different molecular weight forms. The high-molecular-weight form had somewhat higher β-N-acetylgalactosaminidase activity than the lower-molecular-weight enzyme which had β-N-acetylgalactosaminidase activity equivalent to about 40% of its β-N-acetylglucosaminidase activity. Bovine blood seemed to induce both enzymes, but N-acetylamino sugars specifically induced the low-molecular-weight form. N-Acetylgalactosamine had an especially marked effect on activity. The low-molecular-weight form of enzyme was purified from the culture filtrate by fractionation with ammonium sulfate and various column chromatographies. The purified enzyme was found to be homogeneous by polyacrylamide gel electrophoresis. The optimum pH was 4.0 to 5.0 for β-N-acetylglucosaminidase activity and 5.5 to 6.5 for β-N-acetylgalactosaminidase activity. The enzyme hydrolyzed natural substrates such as di-N-acetylchitobiose, tri-N-acetylchitotriose, and a glycopeptide obtained by modification of fetuin.  相似文献   

16.
Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7–8 and temperature 35–40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10−3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes.  相似文献   

17.
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 μM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 ± 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 ± 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s−1 M−1), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 μM, the initial nitrite release rate of M22L/L380I enzyme was 17 ± 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 ± 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.  相似文献   

18.
A keratinase was isolated from the culture medium of feather-degrading Bacillus licheniformis PWD-1 by use of an assay of the hydrolysis of azokeratin. Membrane ultrafiltration and carboxymethyl cellulose ion-exchange and Sephadex G-75 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinase relative to that in the original medium was approximately 70-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Sephadex G-75 chromatography indicated that the purified keratinase is monomeric and has a molecular mass of 33 kDa. The optimum pH and the pI were determined to be 7.5 and 7.25, respectively. Under standard assay conditions, the apparent temperature optimum was 50°C. The enzyme is stable when stored at −20°C. The purified keratinase hydrolyzes a broad range of substrates and displays higher proteolytic activity than most proteases. In practical applications, keratinase is a useful enzyme for promoting the hydrolysis of feather keratin and improving the digestibility of feather meal.  相似文献   

19.
The lignocellulose-degrading actinomycete Streptomyces viridosporus T7A produced an extracellular esterase when grown in a mineral salts-yeast extract medium. Extracellular esterase activity was first detected during the late stationary phase and typically followed the appearance of intracellular activity. When the organism was grown in lignocellulose-supplemented medium, esterase activity was not increased, but lignocellulose-esterified p-coumaric acid and vanillic acid were released into the medium. Polyacrylamide gels showed that several extracellular esterases differing in substrate specificity were produced. Ultrafiltration was used to concentrate the esterase prior to purification. Activity was recovered mostly in the molecular weight fraction between 10,000 and 100,000. Concentrated esterase was further purified by DEAE-Sepharose anion-exchange chromatography to a specific activity 11.82 times greater than that in the original supernatant. There were seven detectable esterase active proteins in the partially purified enzyme solution. Three were similar esterases that may be isoenzymes. The partially purified esterase had a pH optimum for activity of 9.0, a temperature optimum of 45 to 50°C, and a Km and Vmax of 0.030 mM and 0.097 μmol/min per ml, respectively, when p-nitrophenyl butyrate was the substrate. The enzyme was unstable above 40°C but retained activity when stored at 4 or −20°C. It lost some activity (20%) when lyophilized. Substrate specificity assays showed that it hydrolyzed ester linkages of p-nitrophenyl butyrate, α-naphthyl acetate, α-naphthyl butyrate, and lignocellulose. Vanillic and p-coumaric acids were identified as products released from lignocellulose. The enzyme is thought to be a component of the lignocellulose-degrading enzyme system of S. viridosporus.  相似文献   

20.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号