首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matsuo T  Ishiura M 《FEBS letters》2011,585(10):1495-1502
The genome of the unicellular green alga Chlamydomonas reinhardtii has both plant-like and animal-like genes. It is of interest to know which types of clock genes this alga has. Recent forward and reverse genetic studies have revealed that its clock has both plant-like and algal clock components. In addition, since C. reinhardtii is a useful model organism also called "green yeast", the identification of clock genes will make C. reinhardtii a powerful model for studying the molecular basis of the eukaryotic circadian clock. In this review, we describe our forward genetic approach in C. reinhardtii and discuss some recent findings about its circadian clock.  相似文献   

2.
3.
Recent work on the circadian clock of the unicellular green alga Chlamydomonas reinhardtii strengthens its standing as a convenient model system for circadian study. It was shown to be amenable to molecular engineering using a luciferase-based real-time reporter for circadian rhythms. Together with the completed draft genomic sequence, the new system opens the door for genome-scale forward and reverse genetic analysis.  相似文献   

4.
Chloroplast-encoded genes, like nucleus-encoded genes, exhibit circadian expression. How the circadian clock exerts its control over chloroplast gene expression, however, is poorly understood. To facilitate the study of chloroplast circadian gene expression, we developed a codon-optimized firefly luciferase gene for the chloroplast of Chlamydomonas reinhardtii as a real-time bioluminescence reporter and introduced it into the chloroplast genome. The bioluminescence of the reporter strain correlated well with the circadian expression pattern of the introduced gene and satisfied all three criteria for circadian rhythms. Moreover, the period of the rhythm was lengthened in per mutants, which are phototactic rhythm mutants carrying a long-period gene in their nuclear genome. These results demonstrate that chloroplast gene expression rhythm is a bona fide circadian rhythm and that the nucleus-encoded circadian oscillator determines the period length of the chloroplast rhythm. Our reporter strains can serve as a powerful tool not only for analysis of the circadian regulation mechanisms of chloroplast gene expression but also for a genetic approach to the molecular oscillator of the algal circadian clock.  相似文献   

5.
In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.  相似文献   

6.
7.
8.
Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two‐way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age‐related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age‐related changes are not understood. We report that the circadian light–sensitive protein CRYPTOCHROME (CRY) is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. We also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY‐deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti‐aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging.  相似文献   

9.
衣藻有性生殖的分子机制   总被引:1,自引:0,他引:1  
衣藻作为分子生物学研究的模式材料,被广泛用于植物光合作用、鞭毛组装与功能、细胞周期与节律、细胞信号传导与光感受、细胞识别等重要生物学过程的研究,而且衣藻有性生殖的分子机制与人类某些疾病的发生机制存在联系.该文对国内外近年来有关莱茵衣藻在有性生殖过程中凝集素的动态分布,包括鞭毛粘连、补充、传递、脱粘连、凝集素合成的正调节,以及与性凝集素行为有关的基因研究进展进行综述,以阐明衣藻有性生殖的分子机制,为人类的疾病研究提供参考.  相似文献   

10.
11.
Chlamydomonas reinhardtii is a model species of algae for studies on the circadian clock. Previously, we isolated a series of mutants showing defects in the circadian rhythm of a luciferase reporter introduced into the chloroplast genome, and identified the genes responsible for the defective circadian rhythm. However, we were unable to identify the gene responsible for the defective circadian rhythm of the rhythm of chloroplast 97 (roc97) mutant because of a large genomic deletion. Here, we identified the gene responsible for the roc97 mutation through a genetic complementation study. This gene encodes a protein that is homologous to the subunit of N-terminal acetyltransferase (NAT) which catalyzes N-terminal acetylation of proteins. Our results provide the first example of involvement of the protein N-terminal acetyltransferase in the circadian rhythm.  相似文献   

12.
Chlamydomonas reinhardtii has been used as an experimental model organism for circadian rhythm research for more than 30 yr. Some of the physiological rhythms of this alga are well established, and several clock mutants have been isolated. The cloning of clock genes from these mutant strains by positional cloning is under way and should give new insights into the mechanism of the circadian clock. In a spectacular space experiment, the question of the existence of an endogenous clock vs. an exogenous mechanism has been studied in this organism. With the emergence of molecular analysis of circadian rhythms in plants in 1985, a circadian gene expression pattern of several nuclear and chloroplast genes was detected. Evidence is now accumulating that shows circadian control at the translational level. In addition, the gating of the cell cycle by the circadian clock has been analyzed. This review focuses on the different aspects of circadian rhythm research in C. reinhardtii over the past 30 yr. The suitability of Chlamydomonas as a model system in chronobiology research and the adaptive significance of the observed rhythms will be discussed.  相似文献   

13.
In mammals, behavioral and physiological processes display 24-h rhythms that are regulated by a circadian system. In the present study, we investigated the possibility that the expression of clock genes in peripheral leukocytes can be used to assess the circadian clock system. We found that Per1 and Per2 exhibit circadian oscillations in mRNA expression in mouse peripheral leukocytes. Furthermore, the rhythms of Per1 and Per2 mRNA expression in peripheral leukocytes are severely blunted in homozygous Cry1/2 double-deficient mice that are known to have an abolished biological clock. We have examined the circadian expression of clock genes in human leukocytes and found that Per1 mRNA exhibits a robust circadian expression while Per2 and Bmal1 mRNA showed weak rhythm. These observations suggest that monitoring Per1 mRNA expression in human leukocytes may be useful for investigating the function of the circadian system in physiological and pathophysiological states.  相似文献   

14.
15.
16.
Silflow CD  Sun X  Haas NA  Foley JW  Lefebvre PA 《Genetics》2011,189(4):1249-1260
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.  相似文献   

17.
18.
The RNA-binding protein CHLAMY1 from the green alga Chlamydomonas reinhardtii consists of two subunits. One (named C1) contains three lysine homology motifs and the other (named C3) has three RNA recognition motifs. CHLAMY1 binds specifically to uridine-guanine-repeat sequences and its circadian-binding activity is controlled at the posttranslational level, presumably by time-dependent formation of protein complexes consisting of C1 and C3 or C1 alone. Here we have characterized the role of the two subunits within the circadian system by measurements of a circadian rhythm of phototaxis in strains where C1 or C3 are either up- or down-regulated. Further, we have measured the rhythm of nitrite reductase activity in strains with reduced levels of C1 or C3. In case of changes in the C3 level (both increases and decreases), the acrophase of the phototaxis rhythm and of the nitrite reductase rhythm (C3 decrease) was shifted by several hours from subjective day (maximum in wild-type cells) back towards the night. In contrast, both silencing and overexpression of C1 resulted in disturbed circadian rhythms and arrhythmicity. Interestingly, the expression of C1 is interconnected with that of C3. Our data suggest that CHLAMY1 is involved in the control of the phase angle and period of the circadian clock in C. reinhardtii.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号