首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Susceptibility of Diabrotica virgifera virgifera (LeConte) larvae to DAS‐59122‐7 maize was evaluated using a laboratory technique that measures rootworm survival to adulthood on maize seedlings. This method produces direct measures of larval susceptibility using realistic exposure to the same range of insecticidal protein concentrations found in field‐grown DAS‐59122‐7 maize roots. First, second and third instars were reared to adulthood on DAS‐59122‐7 maize seedlings or a non‐transgenic, near‐isoline maize. Data on survival, adult gender ratio, adult weight and median emergence were collected. Overall, larval susceptibility to DAS‐59122‐7 maize was lower than earlier predictions ( Storer et al. 2006 ). Neonate survival on DAS‐59122‐7 maize was approximately 33% of isoline survival after 17 days, and the same 33% recovered and developed to adulthood when the isoline maize was substituted. Survival rate on DAS‐59122‐7 maize increased with instar. The mean survivorship was 0.5%, 26% and 65% when exposure to DAS‐59122‐7 maize began at the first, second and third instars, respectively. Exposure to DAS‐59122‐7 maize led to sub‐lethal effects on adult gender ratio, weight and median emergence. These effects decreased when exposure to DAS‐59122‐7 maize began at later instars. The killing effect of DAS‐59122‐7 maize on rootworm larvae appeared to result from the combined chronic effects and absence of a suitable host as perceived by the larvae. The relevance of these data and the methodology of estimating rootworm susceptibility to plant‐incorporated protectants are discussed in the context of the US Environmental Protection Agency’s functional definition of ‘high dose’ and use of refuge for resistance management ( EPA 1998a ). Based on these results it is evident that DAS‐59122‐7 maize does not meet the functional definitions of high dose as described by EPA (1998a,b) and ILSI (1999) , and the utility of refuge, refuge size and refuge placement for delaying rootworm resistance should be further investigated.  相似文献   

2.
Abstract 1 Field studies evaluated plant attractants and analogues as tools to move corn rootworm beetles (Diabrotica spp.) into areas to be treated with toxic baits for population suppression via mass removal/annihilation of reproductive adults. 2 When dispensed from sticky traps in maize, 2‐phenyl‐1‐ethylamine and 2‐phenyl‐1‐ethanol captured more northern corn rootworm, Diabrotica barberi, than did 4‐methoxyphenethanol. Only 2‐phenyl‐1‐ethanol attracted the western corn rootworm, Diabrotica virgifera virgifera, but not until maize matured beyond milk stage. 3 Attraction of D. barberi to the amine, alone or blended with 2‐phenyl‐1‐ethanol, occurred before and after maize flowered but not during intervening silk or blister stages. Attraction recurred during early milk stage at or before 50% emergence of adult female D. barberi or D. v. virgifera, respectively, and before populations declined for the season. 4 Synergistic interaction of 2‐phenyl‐1‐ethylamine with 2‐phenyl‐1‐ethanol in attracting D. barberi females did not occur until maize matured to late milk stage. 5 The amine‐alcohol blend (0.44 point sources m?2) doubled the density of D. barberi but not D. v. virgifera when applied to small plots within mostly milk‐stage or younger maize. Traps without bait within attractant‐treated plots captured more female, but not male, D. barberi than did traps in untreated control plots, hinting that females accounted for most of the observed increase in beetle density. 6 The results suggest that attractants can be used despite phenological limitations to concentrate preovipositional females within field areas and thus to complement a variety of corn rootworm control strategies.  相似文献   

3.
Corn rootworms (Diabrotica spp.) make up the major insect pest complex of corn in the US and Europe, and there is a need for molecular markers for genetics studies. We used an enrichment strategy to develop microsatellite markers from the western corn rootworm (Diabrotica virgifera virgifera). Of 54 loci isolated, 25 were polymorphic, and of these, 17 were surveyed for variability in 59 wild individuals. In addition, the potential for cross‐amplification of these microsatellites was surveyed for Mexican, northern, and southern corn rootworms. Nine microsatellite loci showed Mendelian inheritance and are likely to be useful in population genetics studies.  相似文献   

4.
Event DAS‐59122‐7 is a novel transgenic trait designed to protect the roots and yield potential of maize from the insect pest corn rootworm Diabrotica spp. (Col.: Chrysomelidae). The increased pest status of corn rootworm, exceptional efficacy of this trait, and anticipated increases in farm efficiency and grower and environmental safety will drive adoption of this trait. Strong grower acceptance of this trait highlights the importance of science‐based and practical resistance management strategies. A non‐diapause trait was introgressed into two laboratory colonies of Diabrotica virgifera virgifera collected from geographically distinct locations: Rochelle, IL and York, NE. Both colonies were divided and each reared on maize containing event DAS‐59122‐7 or its near isoline. Selected and unselected colonies were evaluated for phenotypic change in larval development, injury potential and survival to adulthood during 10 and 11 generations. The F1 generation of both selected colonies displayed increased larval development, survivorship and measurable, but economically insignificant increases in injury potential on DAS‐59122‐7 maize. Survival rates of 0.4 and 1.3% in F1 generations of both selected colonies corroborate field estimates of survival on DAS‐59122‐7 maize. Over later generations, total phenotypic variation declined gradually and irregularly. Despite the absence of random mating, the tolerance trait could not be fixed in either population after 10 or 11 generations of selection. An allele conferring major resistance to DAS‐59122‐7 was not identified in either selected colony. The assessment also concluded that major resistance gene(s) are rare in populations of D. v. virgifera in the United States, and that a minor trait(s) conferring a low level of survival on DAS‐59122‐7 maize was present. The tolerance trait identified in this study was considered minor with respect to its impact on DAS‐59122‐7 maize efficacy, and the role this trait may play in total effective refuge for major resistance genes with recessive inheritance is the basis of future work.  相似文献   

5.
Abstract  To develop spatial sampling plans for corn rootworm ( Diabrotica spp.) adults, their spatial distributions were characterized and economics of sampling plans were evaluated by comparing sampling costs between spatial and conventional (non-spatial) sampling plans. Semivariogram modelling and spatial by with distance indices showed that corn rootworm adults were significantly (P < 0.05) aggregated at peak population densities and any two samples were spatially correlated within approximately 45 m, with 39–90% of the variability explained by spatial dependence. Sampling costs for spatial sampling plans linearly increased as the sampling distance decreased and exponentially increased as the field size increased. Although sampling costs for non-spatial sampling plans were generally lower, spatial sampling plans could be more economical when the mean insect density became lower and the field size became smaller. This study demonstrated that spatial sampling plans could be optimized to minimize the sampling costs and maximize the spatial resolution.  相似文献   

6.
Abstract:  The western corn rootworm Diabrotica virgifera virgifera Le Conte (Col., Chrysomelidae), a serious pest of maize, has been recently introduced into Europe. Several approaches for its control are presently under investigation including microbial agents. During a field survey in Hungary in 2005, naturally occurring entomopathogenic fungi were found to attack this pest. These novel isolates together with standard isolates were tested for virulence against D. v. virgifera larvae and adults. Twenty strains of Metarhizium anisopliae , Beauveria bassiana and Beauveria brongniartii were used in bioassays in the laboratory. Larvae and adults were dipped into a spore suspension with a concentration of 1 × 107 conidia (con.)/ml. They were kept for 14 days at 22°C (±2°C) and 70% relative humidity. The number of infected larvae and adults were counted and infection rates were calculated. Adults were significantly more susceptible to entomopathogenic fungi than larvae. The most virulent isolate infected about 47% of larvae ( M. anisopliae Ma2277), whereas the infection rate in adults was up to 97% ( M. anisopliae Ma2275). Isolates of M. anisopliae caused significantly higher mortalities than isolates of B. brongniartii and B. bassiana . Most of the adult beetles were killed within 12 days. Isolates from D. v. virgifera were more virulent than those from other hosts.  相似文献   

7.
Abstract:  The use of entomopathogenic nematodes (EPN) is potentially one ecological approach to control the invasive alien western corn rootworm ( Diabrotica virgifera virgifera LeConte, Col., Chrysomelidae) in Europe. This study investigated the establishment and the short- and long-term persistence of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson and Klein (Rh., Heterorhabditidae) and Steinernema feltiae Filipjev (Rh., Steinernematidae) in three maize fields in southern Hungary, using the insect-baiting technique. All three EPN species equally established and persisted in maize fields. The timing of application (April or June) did not influence the establishment of EPN species. EPNs persisted for 2–5 months, i.e. they survived up to and throughout D. v. virgifera larval occurrence in the soil. Results demonstrate that D. v. virgifera larvae can potentially be controlled by EPNs during the same year of EPN application but no long-term control effect is expected under intensive maize cultivation practices.  相似文献   

8.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

9.
Susceptibility of adult populations of the western corn rootworm, Diabrotica virgifera virgifera LeConte, to several insecticides was evaluated in seven Kansas counties, including Dickinson, Ford, Finney, Pottawatomie, Republic, Riley, and Stevens, between 1996 and 2002. All populations surveyed were highly susceptible to methyl parathion with the largest difference in susceptibility of only three-fold based on 16 complete bioassays for the populations from six counties over a 5-yr period. Noticeable decreases in carbaryl susceptibility were found in populations collected from Republic County between 1997 and 2001 when the cucurbitacin-carbaryl-based bait SLAM was widely used as an areawide management approach for adult corn rootworm control. However, the lowered carbaryl susceptibility returned to previous levels 1 yr after the use of SLAM was halted in the managed (treated) cornfields. This change implies possible dispersal of insects into the relatively small managed area from surrounding untreated cornfields and / or some fitness cost associated with carbaryl resistance within the population. Relative susceptibility of western corn rootworm adults also was evaluated for seven commonly used insecticides, including bifenthrin, carbaryl, chlorpyrifos, cypermethrin, fipronil, malathion, and methyl parathion. They were tested with corn rootworm adults collected from a single cornfield. Methyl parathion and bifenthrin were highly toxic to corn rootworm adults, and cypermethrin, chlorpyrifos, carbaryl, and malathion were only slightly less toxic. Although fipronil was highly toxic to adult rootworms, its activity was much slower than that of other insecticides. Thus, bifenthrin and methyl parathion were among the most effective in killing corn rootworm adults.  相似文献   

10.
The corn rootworm complex (Coleoptera: Chrysomelidae) constitutes a significant threat to maize production in the United States, and more recently, in Europe. We conducted an analysis of readily available field trial data to validate an existing damage function for corn rootworm larvae. We used a nested error component model with unbalanced panel data to describe the relationship between yield loss and root injury caused by these insects. These data were collected by personnel with the Insect Management and Insecticide Evaluation Programme (Department of Crop Sciences, University of Illinois) and represent 19 location‐years. To our knowledge, this is the largest data set used to estimate a damage function for corn rootworm larvae. Unlike many experiments examining the relationship between root injury and yield loss caused by corn rootworm larvae, the data set used for our analysis includes many Bt maize hybrids. Our model suggests that for each node of roots injured by corn rootworm larvae, a yield loss of approximately 15% can be expected. Statistically significant variance components included an effect of location and experimental error. We speculate that variation in weather across experimental sites was the principal factor contributing to the significant effect of location. The substantial experimental error observed for our model highlights the limitations of utilizing a multi‐year, geographically diverse damage function for predicting yield loss because of root injury on a small scale. We discuss major factors contributing to the variance components estimated by our model and suggest techniques for improving future analyses of the damage function for corn rootworm larvae.  相似文献   

11.
  • 1 Despite the increasing economic importance of root feeding pests such as the western corn rootworm (WCR) Diabrotica virgifera virgifera, basic parameters about their below ground biology are only partly understood. The present study investigated the dispersal and distribution of WCR larvae in the maize root system during their development at two growth stages of maize (BBCH 13–14 and BBCH 17–18).
  • 2 Dispersal of the WCR larvae increased as they developed; the larvae moved off their original place of emergence and into deeper soil layers. Overall, changes in the horizontal distribution of the larvae were more extensive than changes in the vertical distribution.
  • 3 The spatial analysis of distance indices revealed that the larvae had an aggregative distribution throughout their development. The feeding site of larvae in the root system was determined by the stage of larval development. Initially, WCR larvae started feeding in close proximity to their emergence location and moved to more developed root tissue towards the end of their development.
  • 4 Differences in root phenology mainly influenced the distribution of the larvae at the end of their development, when larvae exhibited increased vertical movement at a later growth stage of maize.
  • 5 The mechanisms of these distributional changes and the implications for the management of WCR larvae are discussed, especially with regard to chemical control, because fewer larvae are expected to be targeted at a later growth stage of maize.
  相似文献   

12.
Abstract: In the hopes of lessening the current reliance on soil insecticides, developing a viable alternative for transgenic maize hybrids, and providing sustainable options for Europe, researchers recently have been developing novel maize lines that exhibit resistance and/or tolerance to corn rootworm larvae. Here we report the results of a 2‐year field experiment in a northern growing region assessing the resistance and tolerance of 10 experimental synthetic maize populations selected for varying levels of damage from western corn rootworm larvae, Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae) and four maize hybrids. Maize non‐preference, antibiosis and tolerance to rootworms was evaluated using previously established methods, including: the Iowa 1–6 root damage rating scale, root fresh weight, compensatory root growth ratings and adult rootworm emergence. Among the experimental synthetic maize populations, BS29‐11‐01 was the most susceptible, and had a mean root damage rating that was greater than the highly susceptible maize hybrid B37 × H84. This line also had the lowest mean root fresh weight and one of the lowest mean compensatory root growth ratings. In contrast, CRW8‐3 appeared to be tolerant to western corn rootworms, and had the lowest mean root damage rating, which was comparable with that of the non‐transgenic hybrid DeKalb® 46‐26.  相似文献   

13.
A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance >99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to >99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2-9 yr with refuges occupying 5-30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).  相似文献   

14.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pest management tactics, including the cultural practice of annual crop rotation. Since first reported in Illinois in the late 1980s, populations of the rotation‐resistant western corn rootworm have spread over a wide area of the eastern Corn Belt. Currently, little information is available concerning the interaction of rotation resistance with the use of genetically modified corn expressing insecticidal toxins from Bacillus thuringiensis Berliner (Bt), a popular tactic for preventing larval injury and its associated yield loss. The goal of this greenhouse experiment was to determine whether rotation‐resistant and rotation‐susceptible western corn rootworm larvae differ with respect to survival or development when exposed to single‐ or dual‐toxin (pyramided) Bt corn. Individual corn plants were infested with 225 near‐hatch eggs at the V5 (five leaf collar) growth stage. Larvae developed undisturbed on the root systems for 17 days, after which they were recovered using Berlese–Tullgren funnels. Surviving larvae were counted to estimate mortality, and head capsule widths were measured to assess development. Rotation‐resistant and rotation‐susceptible larvae had statistically similar mean levels of mortality and head capsule widths when exposed to both single‐toxin (Cry3Bb1 or Cry34/35Ab1) and pyramided (Cry3Bb1+ Cry34/35Ab1) Bt corn, suggesting that these two populations do not differ with respect to survival or development when exposed to Bt corn. Additionally, the statistically similar mean levels of mortality for larvae exposed to single‐toxin and pyramided Bt corn suggest that pyramided Bt hybrids containing the Cry3Bb1 and Cry34/35Ab1 toxins do not result in additive mortality for western corn rootworm larvae. Implications for management of this economically important pest are discussed.  相似文献   

15.
Field and laboratory studies were conducted in 2000 and 2001 to determine the feasibility of mass marking western corn rootworm adults, Diabrotica virgifera virgifera LeConte, with RbCl in the field. Results showed that application of rubidium (Rb) in solution to both the soil (1 g Rb/plant) and whorl (1 g Rb/plant) of corn plants was optimal for labeling western corn rootworm adults during larval development. Development of larvae on Rb-enriched corn with this technique did not significantly influence adult dry weight or survival. Rb was also highly mobile in the plant. Application of Rb to both the soil and the whorl resulted in median Rb concentrations in the roots (5,860 ppm) that were 150-fold greater than concentrations in untreated roots (38 ppm) 5 wk after treatment. Additionally, at least 90% of the beetles that emerged during the first 3 wk were labeled above the baseline Rb concentration (5 ppm dry weight) determined from untreated beetles. Because emergence was 72% complete at this time, a significant proportion of the population had been labeled. Results from laboratory experiments showed that labeled beetles remained distinguishable from unlabeled beetles for up to 4 d postemergence. The ability to efficiently label large numbers of beetles under field conditions and for a defined period with virtually no disruption of the population provides an unparalleled opportunity to conduct mark-recapture experiments for quantifying the short-range, intrafield movement of adult corn rootworms.  相似文献   

16.
If registered, transgenic corn, Zea mays L., with corn rootworm resistance will offer a viable alternative to insecticides for managing Diabrotica spp. corn rootworms. Resistance management to maintain susceptibility is in the interest of growers, the Environmental Protection Agency, and industry, but little is known about many aspects of corn rootworm biology required for an effective resistance management program. The extent of larval movement by the western corn rootworm, Diabrotica virgifera virgifera LeConte, that occurs from plant-to-plant or row-to-row after initial establishment was evaluated in 1998 and 1999 in a Central Missouri cornfield. Post-establishment movement by western corn rootworm larvae was clearly documented in two of four treatment combinations in 1999 where larvae moved up to three plants down the row and across a 0.46-m row. Larvae did not significantly cross a 0.91-m row after initial host establishment in 1998 or 1999, whether or not the soil had been compacted by a tractor and planter. In the current experiment, western corn rootworm larvae moved from highly damaged, infested plants to nearby plants with little to no previous root damage. Our data do not provide significant insight into how larvae might disperse after initial establishment when all plants in an area are heavily damaged or when only moderate damage occurs on an infested plant. A similar situation might also occur if a seed mixture of transgenic and isoline plants were used and if transgenic plants with rootworm resistance are not repellent to corn rootworm larvae.  相似文献   

17.
Corn rootworm, Diabrotica spp., larvae represent a significant and widespread economic threat to corn, Zea mays (L.), production in the United States, where control costs and yield losses associated with these insect pests exceed $1 billion annually. Preventing root injury and associated yield loss caused by corn rootworm larvae may be accomplished by the independent use of planting time soil insecticides or transgenic Bt hybrids. However, recent reports of both confirmed and suspected Bt resistance in corn rootworm populations throughout the Corn Belt have led to significant interest in the use of these two management tactics simultaneously. Although this approach has been investigated to some extent previously, information is lacking on how the use of a soil insecticide in tandem with a Bt seed blend—Bt and refuge (non‐Bt) seed mixed into a single product—may affect root protection and yield. We describe an experiment including six trial sites conducted over a three‐year period where various seed blends and soil insecticide/seed blend combinations were evaluated. The predominant species contributing to root injury across all sites was the western corn rootworm (Diabrotica virgifera virgifera LeConte). A weighted technique is presented for evaluating root injury for seed blends that offers a reliable estimate of product performance. The addition of a soil insecticide to the seed blend treatments never resulted in significantly improved root protection and failed to provide a consistent yield benefit. Our results suggest that a soil insecticide/seed blend combination approach is not warranted. Additionally, a subanalysis performed on individual refuge and nearby Bt root systems for seed blend treatments provides insight into the spatial characteristics of root injury in seed blend scenarios.  相似文献   

18.
Susceptibility to Cry3Bb1 toxin from Bacillus thuringiensis (Bt) was determined for western corn rootworm, Diabrotica virgifera virgifera LeConte, neonates from both laboratory and field populations collected from across the Corn Belt. Rootworm larvae were exposed to artificial diet treated with increasing Cry3Bb1 concentrations, and mortality and growth inhibition were evaluated after 4-7 d. The range of variation in Bt susceptibility indicated by growth inhibition was similar to that indicated by mortality. Although interpopulation variation in susceptibility was observed, the magnitude of the differences was comparable with the variability observed between generations of the same population. In general, the toxin was not highly toxic to larvae and estimated LC50 and EC50 values were several times higher than those reported for lepidopteran-specific Cry toxins by using similar bioassay techniques. These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among rootworm populations and provide a baseline for estimating potential shifts in susceptibility that might result from selection and exposure to Cry3Bb1-expressing corn hybrids.  相似文献   

19.
1 Invasive pest species are challenging partly because the invasion process may be highly dynamic and because of the lack of knowledge of many researchers, professionals and farmers in the newly-invaded regions. The chrysomelid Diabrotica virgifera virgifera LeConte is such an invasive pest. It has been the main pest of continuous maize in the U.S.A. for more than 60 years and is currently spreading throughout Europe.
2 In the area with a long history of this pest (Central and North America), scientific knowledge concerning the ecology of this pest has accumulated over the last decades. This resource is of great importance to both America and Europe and has to be gathered, shared and adapted to new situations. We therefore examined, both qualitatively and quantitatively, the scientific literature relating to D.   virgifera virgifera ecology.
3 The quantitative analysis suggests that research on D.   virgifera virgifera ecology is still in its infancy in Europe and suffers from geographical barriers (between Europe and North America and between linguistic areas within Europe) and that scientific communication should be strengthened both between North America and Europe and within Europe.
4 As a first solution to this problem, we introduce three companion review articles that constitute a landmark for D.   virgifera virgifera research, enabling European and American scientists and decision-makers to orient themselves and discover new opportunities for research. We also stress that international research cooperation is the most important key to successfully manage invasive species.  相似文献   

20.
In previous investigations, we have determined that organophosphate resistance in the western corn rootworm, Diabrotica virgifera virgifera, is at least partially attributed to a group of non-specific carboxylesterases referred to as group II. Antiserum raised against a purified 66-kDa group II esterase is specific for the denatured enzyme. This antiserum reacts similarly with both beetle homogenates from resistant and susceptible populations, although there is much higher signal intensity in immunoblots of resistant relative to susceptible beetles. These results suggest that overproduction of group II esterases is the underlying basis of esterase-mediated resistance in D. v. virgifera by demonstrating that (1) group II esterases are immunologically indistinguishable between the resistant and susceptible populations, and (2) the intensity differences are due to increased group II esterase proteins in the resistant population. The diagnostic potential of immunological-based assays was tested with a traditional diagnostic concentration bioassay and a biochemical-based native PAGE assay. Significant correlations were observed among all three diagnostic assays (regression coefficients ranging from 0.95 to 0.96). These results demonstrate the importance of the 66-kDa protein as a resistance-associated biochemical marker, thus emphasizing the potential for 66-kDa protein-targeted immunoassays in resistance monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号