首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Despite well known oncogenic function of G1-S cell-cycle progression, cyclin D2 (CCND2) is often silenced epigenetically in prostate cancers. Here we show that CCND2 has an inhibitory potential on the proliferation of androgen receptor (AR)-dependent prostate cancer LNCaP cells. Forced expression of CCND2 suppressed the proliferative ability and induced cell death in LNCaP cells in a cdk-independent manner. Knocking down CCND2 restored the proliferation of LNCaP subclones with relatively high CCND2 expression and low proliferative profiles. Immunoprecipitation using deletion mutants of CCND2 indicated that a central domain of CCND2 is required for binding to AR. A deletion mutant lacking the central domain failed to hinder LNCaP cells. Collectively, our results indicated that CCND2 inhibits cell proliferation of AR-dependent prostate cancer through the interaction with AR. Our study suggests that restoration of CCND2 expression potentially prevents the carcinogenesis of prostate cancer, which is mostly AR-dependent in the initial settings.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Androgen receptor (AR) is a critical factor in the development and progression of prostate cancer. We and others recently demonstrated that eliminating AR expression leads to apoptotic cell death in AR-positive prostate cancer cells. To understand the mechanisms of AR-dependent survival, we performed a genome-wide search for AR-regulated survival genes. We found that serum/glucocorticoid-induced protein kinase-1 (SGK-1) mRNA levels were significantly upregulated after androgen stimulation, which was confirmed to be AR dependent. Promoter analysis revealed that the AR interacted with the proximal and distal regions of the sgk1 promoter, leading to sgk-1 promoter activation after androgen stimulation. Functional assays demonstrated that SGK-1 was indispensable for the protective effect of androgens on cell death induced by serum starvation. SGK-1 overexpression not only rescued cells from AR small-interfering RNA (siRNA)-induced apoptosis, but also enhanced AR transactivation, even in the absence of androgen. Additionally, SGK-1 siRNA reduced AR transactivation, indicating a positive feedback effect of SGK-1 expression on AR-mediated gene expression and cellular survival. Taken together, our data suggest that SGK-1 is an androgen-regulated gene that plays a pivotal role in AR-dependent survival and gene expression.  相似文献   

11.
12.
Versican, one of the key components of prostatic stroma, plays a central role in tumor initiation and progression. Here, we investigated promoter elements and mechanisms of androgen receptor (AR)-mediated regulation of the versican gene in prostate cancer cells. Using transient transfection assays in prostate cancer LNCaP and cervical cancer HeLa cells engineered to express the AR, we demonstrate that the synthetic androgen R1881 and dihydrotestosterone stimulate expression of a versican promoter-driven luciferase reporter vector (versican-Luc). Further, both basal and androgen-stimulated versican-Luc activities were significantly diminished in LNCaP cells, when AR gene expression was knocked down using a short hairpin RNA. Methylation-protection footprinting analysis revealed an AR-protected element between positions +75 and +102 of the proximal versican promoter, which strongly resembled a consensus steroid receptor element. Electrophoretic mobility shift and supershift assays revealed strong and specific binding of the recombinant AR DNA binding domain to oligonucleotides corresponding to this protected DNA sequence. Site-directed mutagenesis of the steroid receptor element site markedly diminished R1881-stimulated versican-Luc activity. In contrast to the response seen using LNCaP cells, R1881 did not significantly induce versican promoter activity and mRNA levels in AR-positive prostate stromal fibroblasts. Interestingly, overexpression of beta-catenin in the presence of androgen augmented versican promoter activity 10- and 30-fold and enhanced versican mRNA levels 2.8-fold in fibroblasts. In conclusion, we demonstrate that AR transactivates versican expression, which may augment tumor-stromal interactions and may contribute to prostate cancer progression.  相似文献   

13.
There is increasing evidence that sensitization of the androgen receptor (AR) signaling pathway contributes to the failure of androgen ablation therapy for prostate cancer, and that direct targeting of the AR may be a useful therapeutic approach. To better understand how AR function could be abrogated in prostate cancer cells, we have developed a series of putative dominant-negative variants of the human AR, containing deletions or mutations in activation functions AF-1, AF-5, and/or AF-2. One construct, AR inhibitor (ARi)-410, containing a deletion of AF-1 and part of AF-5 of the AR, had no intrinsic transactivation activity but inhibited wild-type AR (wtAR) in a ligand-dependent manner by at least 95% when transfected at a 4:1 molar ratio. ARi-410 was an equally potent inhibitor of gain-of-function AR variants. Ectopic expression of ARi-410 inhibited the proliferation of AR-positive LNCaP cells, but not AR-negative PC-3 cells. Whereas ARi-410 also marginally inhibited progesterone receptor activity, this was far less pronounced than the effect on AR (50% vs. 95% maximal inhibition, respectively), and there was no inhibition of either vitamin D or estrogen receptor activity. In the presence of ligand, ARi-410 interacted with wtAR, and both receptors translocated into the nucleus. Whereas the amino-carboxy terminal interaction was not necessary for optimal dominant-negative activity, disruption of dimerization through the ligand binding domain reduced the efficacy of ARi-410. In addition, although inhibition of AR function by ARi-410 was not dependent on DNA binding, the DNA binding domain was required for dominant-negative activity. Taken together, our results suggest that interaction between ARi-410 and the endogenous AR in prostate cancer cells, potentially through the DNA binding and ligand binding domains, results in a functionally significant reduction in AR signaling and AR-dependent cell growth.  相似文献   

14.
15.
16.
17.
Androgen-regulated genes (ARG) are implicated in normal and neoplastic growth of the prostate. Recently, we reported genomic amplification and/or overexpression of a previously known neurotrophic factor, prosaposin, in androgen-independent (AI) or metastatic prostate cancer (PCa) cells and tissues. Prosaposin and/or its known active molecular derivatives (e.g., saposin C) function as a pluripotent growth factor with diverse biological activities that favor malignant phenotypes in PCa cells. In addition, prosaposin or saposin C upregulates androgen receptor (AR) and AR-target genes (i.e., prostate-specific antigen, Probasin) expression and activity in LNCaP cells. Here, we examined prosaposin as an ARG. We report that DHT treatment of LNCaP cells increases prosaposin expression. In addition, we demonstrate androgen-responsiveness of prosaposin promoter and AR occupancy to a hormone-responsive element located in the proximal region of the prosaposin promoter. Our data for the first time identify prosaposin as an ARG. This observation, together with the pleiotropic growth factor activity of prosaposin, might suggest a role for this molecule in AR-dependent progression of prostate cancer at its early or late AI-state.  相似文献   

18.
19.
The ligand-bound androgen receptor (AR) regulates target genes via a mechanism involving coregulators such as androgen receptor-associated 54 (ARA54). We investigated whether the interruption of the AR coregulator function could lead to down-regulation of AR activity. Using in vitro mutagenesis and a yeast two-hybrid screening assay, we have isolated a mutant ARA54 (mt-ARA54) carrying a point mutation at amino acid 472 changing a glutamic acid to lysine, which acts as a dominant-negative inhibitor of AR transactivation. In transient transfection assays of prostate cancer cell lines, the mt-ARA54 suppressed endogenous mutated AR-mediated and exogenous wild-type AR-mediated transactivation in LNCaP and PC-3 cells, respectively. In DU145 cells, the mt-ARA54 suppressed exogenous ARA54 but not other coregulators, such as ARA55-enhanced or SRC-1-enhanced AR transactivation. In the LNCaP cells stably transfected with the plasmids encoding the mt-ARA54 under the doxycycline inducible system, the overexpression of the mt-ARA54 inhibited cell growth and endogenous expression of prostate-specific antigen. Mammalian two-hybrid assays further demonstrated that the mt-ARA54 can disrupt the interaction between wild-type ARA54 molecules, suggesting that ARA54 dimerization or oligomerization may play an essential role in the enhancement of AR transactivation. Together, our results demonstrate that a dominant-negative AR coregulator can suppress AR transactivation and cell proliferation in prostate cancer cells. Further studies may provide a new therapeutic approach for blocking AR-mediated prostate cancer growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号