首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine liver rhodanese (thiosulphate sulphurtransferase, EC 2.8.1.1) is modified by 2,4,6-trinitrobenzenesulphonic acid, by the use of modifying agent concentrations in large excess over enzyme protein concentration. The end-point of the reaction, viz., the number, n, per enzyme protein molecule, of modifiable amino groups was determined graphically by the Kézdy-Swinbourne procedure. It was found that the value for n depends on the pH of the reaction medium, and ranges from 2, at pH 7.00, to 10.66, at pH 9.00. Again, the value for n increases with an increase in the concentration of 2,4,6-trinitrobenzenesulphonic acid used, with values ranging from 3.52, at 0.10 mM modifying agent, to 8.96, at 2 mM modifying agent. Rhodanese primary amino groups modification by 2,4,6-trinitrobenzenesulphonic acid is described by a summation of exponential functions of reaction time at pH values of 8.00 or higher, while at lower pH values it is described by a single exponential function of reaction time. However, the log of the first derivative, at initial reaction conditions, of the equation describing protein modification, is found to be linearly dependent on the pH of the reaction. An identical linear dependence is also found when the log of the first derivative, at the start of the reaction, of the equation describing modification-induced enzyme inactivation is plotted against the pH values of the medium used. In consequence, the fractional concentration of rhodanese modifiable amino groups essential for enzyme catalytic function is equal to unity at all reaction pH values tested. It is accordingly concluded that, when concentrations of 2,4,6-trinitrobenzenesulphonic acid in excess of protein concentration are used, all rhodanese modifiable amino groups are essential for enzyme activity. A number of approaches were used in order to establish a mechanism for the modification-induced enzyme inactivation observed. These approaches, all of which proved to be negative, include the possible modification of enzyme sulfhydryl groups, disulphide bond formation, enzyme inactivation due to sulphite released during modification, modification-induced enzyme protein polymerization, syncatalytic enzyme modification and hydrogen peroxide-mediated enzyme inactivation.  相似文献   

2.
A mathematical treatment of a two-sited, modification-induced protein unfolding model is presented, and it is shown that the dependence of the concentration of modified protein groups on reaction time is described by a linear, second-order, differential equation with nonzero right hand side. The analytic solution of this equation consists of a summation of exponential functions of reaction time. By assigning arbitrary values to the modification and isomerization rate constants of these equations, simulated cases of protein modification are presented, and the apparent end-point of the reaction is determined graphically. It is found that the apparent end-point of the reaction is, in most cases studied, different from the true value of two groups modified per protein molecule, and is a function of both the modification, and isomerization rate constants of the model. The first derivative of the protein modification reaction, at the start of the reaction, [E]'mod (0), is determined, for the same simulated cases of protein modification, by two different analytical methods. It is found that the [E]'mod(0) value, obtained from graphical and numerical analysis data, is in most cases in good agreement with the value expected from first principles. Finally, the different irreversible enzyme inhibition forms, contingent upon the different kinds of the enzyme inactivation-protein modification relationships of the protein modification model under consideration, are presented and discussed.  相似文献   

3.
Epoxy supports covalently immobilize proteins following a two-step mechanism; that is, the protein is physically adsorbed and then the covalent reaction takes place. This mechanism has been exploited to combine the selectivity of metal chelate affinity chromatography with the covalent immobilization capacity of epoxy supports. In this way, it has been possible to accomplish, in a simple manner, the purification, immobilization, and stabilization of a poly-His-tagged protein. To fulfill this objective we developed a new kind of multifunctional epoxy support (chelate epoxy support [CES]), which was tested using a poly-His-tagged glutaryl acylase as a model protein (an alphabeta-heterodimeric enzyme of significant industrial interest). The selectivity of the immobilization in CES toward poly-His-tagged proteins was dependent to a large extent on the density and nature of the chelated metal. The highest selectivity was achieved by using low-density chelate groups (e.g., 5 micromol/g) and metals with a low affinity (e.g., Co). However, the rate of covalent immobilization of the protein by its reaction with the epoxy groups on the support significantly increased at alkaline pH values. The multipoint attachment to the CES also depended on the reaction time. The immobilization of both glutaryl acylase subunits was achieved by incubation of the enzyme derivative at pH 10 for 24 h, with the best enzyme derivative 100-fold more stable than the soluble enzyme. By taking advantage of the selectivity properties of the novel support, we were able to immobilize up to 30 mg of protein per gram of modified Eupergit 250 using either pure enzyme or a very crude enzyme extract.  相似文献   

4.
《Process Biochemistry》2010,45(10):1692-1698
For the immobilization-stabilization of multimeric enzymes, we propose a novel heterofunctional support containing a very low concentration of ionized amino groups and a very high concentration of very poorly reactive glyoxyl (aldehyde) groups. A large tetrameric enzyme, β-galactosidase from Thermus sp., was purified and dramatically stabilized with this novel support. The enzyme was first immobilized by physical adsorption via selective multipoint anionic exchange involving the largest region of the enzyme containing all enzyme subunits. Then, an additional long incubation of the immobilized derivative under alkaline conditions was performed in order to promote an intense intramolecular multipoint covalent attachment between amino groups of the adsorbed enzyme and the very stable glyoxyl groups on the support. This novel β-galactosidase derivative is the first one in which the four subunits of this enzyme become attached to a pre-existing support. Additionally, the novel amino-glyoxyl supports were much more suitable than amino-epoxy supports for intramolecular multipoint covalent immobilization of the adsorbed enzyme onto the support. In fact, at pH 7.0, the new supports covalently immobilize the physically adsorbed protein 24-fold more rapidly than epoxy supports. Furthermore, derivatives prepared on amino-glyoxyl supports preserved 85% of catalytic activity and were 5-fold more stable than derivatives prepared on amino-epoxy supports and more than 1000-fold more stable than soluble enzyme.  相似文献   

5.
An enzyme catalyzing the formation of an unusual C-P bond that is involved in the biosynthesis of the antibiotic bialaphos (BA) was isolated from the cell extract of a mutant (NP71) of Streptomyces hygroscopicus SF1293. This enzyme, carboxyphosphonoenolpyruvate (CPEP) phosphonomutase, was first identified as a protein lacking in a mutant (NP213) defective in one of the steps in the pathway to BA. The first 30 residues of the amino terminus of this protein were identical to those predicted by the nucleotide sequence of the gene that restored BA production to NP213. The substrate of the enzyme, a P-carboxylated derivative of phosphoenolpyruvate named CPEP, was also isolated from the broth filtrate of NP213 as a new biosynthetic intermediate of BA. CPEP phosphonomutase catalyzes the rearrangement of the carboxyphosphono group of CPEP to form the C-P bond of phosphinopyruvate.  相似文献   

6.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

7.
An equation is derived from first principles for describing the change in concentration with time of a beta-lactam antibiotic in the presence of intact Gram-negative bacteria possessing a beta-lactamase located in the periplasmic space. The equation predicts a first-order decline in beta-lactam concentration of the form [S] = [Si]e lambda t, where [S] is the exogenous concentration of beta-lactam, [Si] is the value of [S] at time zero, t is the time from mixing of cells and antibiotic and lambda (less than 0) is the decay constant. The value of lambda is exactly described by the theory in terms of experimentally measurable quantities. Quantitative data concerning cephaloridine hydrolysis by intact cells of Haemophilus influenzae agreed well with the theory, as did data concerning the uptake of 2-nitrophenyl galactoside by intact cells of Escherichia coli. Cephalosporin C hydrolysis by intact cells of Pseudomonas aeruginosa did not progress as predicted by the theory. The theory is applicable to any substrate which is acted on by an enzyme that is located solely in the periplasmic space and that obeys the Michaelis-Menten equation of enzyme kinetics.  相似文献   

8.
Using the poly-His-tagged-beta-galactosidase from Thermus sp. strain T2 overexpressed in Escherichia coli (MC1116) as a model enzyme, we have developed a strategy to purify and immobilize proteins in a single step, combining the excellent properties of epoxy groups for enzyme immobilization with the good performance of immobilized metal-chelate affinity chromatography for protein purification. The aforementioned enzyme could not be immobilized onto standard epoxy supports with good yields, and after purification and storage, it exhibited a strong trend to yield very large aggregates as shown by ultracentrifugation experiments. That preparation could not be immobilized in any support, very likely because the pores of the solid became clogged by the large aggregates. These novel epoxy-metal chelate heterofunctional supports contain a low concentration of Co(2+) chelated in IDA groups and a high density of epoxy groups. This enabled the selective adsorption of poly-His-tagged enzymes, and as this adsorption step is necessary for the covalent immobilization procedure, the selective covalent immobilization of the target enzyme could take place. This strategy allowed similar maximum loadings of the target enzyme using either pure or crude preparations of the enzyme. The enzyme derivative presented a very high activity at 70 degrees C (over 1000 IU in the hydrolysis of lactose) and very high stability and stabilization when compared to its soluble counterpart (activity remained unaltered after several days of incubation at 50 degrees C). In fact, this preparation was much more stable than when the same enzyme was immobilized onto standard epoxy Sepabeads.  相似文献   

9.
Cremophor EL, a castor oil derivative, has been considered a non-toxic solubilizer for lipophilic drugs and vitamins. Protein kinase C, a phospholipid/Ca++-dependent protein kinase, is known to phosphorylate, in response to extracellular stimuli, a variety of proteins for cellular functions. The present study shows that Cremophor EL selectively inhibits the activity of protein kinase C in vitro. The potency of this selective inhibition is greater than that of other protein kinase C-specific inhibitor thus far reported. Cremophor EL acts primarily on the enzyme activator diacylglycerol (or the phorbol ester) and prevents the latter from both interacting with the phospholipid and binding to protein kinase C. This is the first report of a significant biological activity induced by this widely used substituted castor oil solubilizer.  相似文献   

10.
Chemical modification and electron spin resonance spectroscopy (ESR) spin-labelling techniques have been employed to investigate the local environment of the essential sulfhydryl groups of chicken liver fructose-1,6-bisphosphatase. The results demonstrate the presence of two distinct classes of sulfhydryl groups in this enzyme. The first class react preferentially with iodoacetate and its spin-labelled derivative, and this results in an increase in catalytic activity, while the second class react preferentially with N-ethylmaleimide and its spin-labelled derivative, and this leads to a decrease in catalytic activity. The ESR spectral data strongly suggest that the first class of sulfhydryl groups are located in a deep cleft of the enzyme molecule, while the second class of sulfhydryl groups are located in a shallow crevice. The environment of the second class of the sulfhydryl groups appears to undergo a significant change after the modification of the first class of sulfhydryl groups by iodoacetate.  相似文献   

11.
Apolipoprotein C-II, a protein found associated with all major classes of plasma lipoproteins, is a potent activator of the enzyme lipoprotein lipase. We have prepared the maleyl, citraconyl and succinyl derivatives of apolipoprotein C-II, and compared the capacities of the intact and tryptically cleaved proteins to activate lipoprotein lipase. The NH2-terminal 50 residue peptide proved virtually inactive, even after removal of the masking groups from the citraconyl derivative. The COOH-terminal 29 residue peptides of maleyl and citraconyl apolipoprotein C-II were more active than the corresponding succinylated peptide. After deacylation of the citraconyl derivative, the COOH-terminal peptide had maximal activity as great as apolipoprotein C-II, although the profile of activation remained dissimilar at low activator concentrations.  相似文献   

12.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to give ammonia and bicarbonate. The enzyme is composed of 8-10 identical subunits (Mr = 17,008). The objective of this study was to clarify some of the structural properties of cyanase for the purpose of understanding the relationship between oligomeric structure and catalytic activity. Circular dichroism studies showed that cyanase has a significant amount of alpha-helix and beta-sheet structure. The one sulfhydryl group per subunit does not react with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) unless cyanase is denatured. Denaturation is apparently complete in 10 M urea or 6 M guanidine hydrochloride, but is significantly reduced in 10 M urea by the presence of azide (analog of cyanate) and is incomplete in 8 M urea. Denatured cyanase could be renatured and reactivated (greater than 85%) by removal of denaturants. Reactivation was greatly facilitated by the presence of certain anions, particularly bicarbonate, and by high ionic strength and protein concentration. The catalytic activity of renatured cyanase was associated only with oligomer. Cyanase that had been denatured in the presence of DTNB to give a cyanase-DTNB derivative could also be renatured at 26 degrees C to give active cyanase-DTNB oligomer. The active oligomeric form of the cyanase-DTNB derivative could be converted reversibly to inactive dimer by lowering the temperature to 4 degrees C or by reduction of the ionic strength and removal of monoanions. These results provide evidence that free sulfhydryl groups are not required for catalytic activity and that catalytic activity may be dependent upon oligomeric structure.  相似文献   

13.
Two rate equations have been developed to model the hydrolysis of ground lean meat protein by Alcalase. The first equation was based on classical Michaelis-Menten kinetics and the second on the adsorption of enzyme to the protein prior to reaction. It was assumed that this adsorption could be modelled by a Langmuir-type adsorption isotherm. Each equation considered the enzyme to be competitively inhibited by reaction product, and considered enzyme inactivation to be first order. Both rate equations have been fitted to experimental data obtained from the hydrolysis of meat protein by Alcalase. Initial rate data indicated that the adsorption model was more appropriate. However, both equations gave satisfactory fits to 11 reaction progress curves determined over a wide range of enzyme and substrate concentrations.  相似文献   

14.
A protein affinity labeling derivative of E. coli tRNAfMet has been prepared which carries an average of one reactive side chain per molecule, distributed over four structural regions. Each side chain contains a disulfide bond capable of reaction with cysteine residues and an N-hydroxysuccinimide ester group capable of coupling to lysine epsilon-amino groups in proteins. Reaction of the modified tRNA with E. coli methionyl-tRNA synthetase leads to crosslinking only by reaction with lysine residues in the protein. Examination of the tRNA present in the crosslinked complex reveals that the enzyme is coupled to side chains attached to the 5' terminal nucleotide, the dihydrouridine loop, the anticodon and the CCA sequence. Digestion of the crosslinked enzyme with trypsin followed by peptide mapping reveals that the major crosslinking reactions occur at four specific lysine residues, with minor reaction at two additional sites. Native methionyl-tRNA synthetase contains 90 lysine residues, 45 in unique sequences of the dimeric alpha 2 enzyme. Crosslinking of the protein to different regions in tRNAfMet thus occurs with the high degree of selectivity necessary for use in determining the peptide sequences which are near specific nucleotide sequences of tRNA bound to the protein.  相似文献   

15.
Na+/K+-ATPase in membranous preparations from the rectal gland of Squalus acanthias has been spin-labelled either on Class I -SH groups, which maintain overall ATPase activity, or on Class II -SH groups, for which only phosphorylation activity is preserved. Labelling of the Class I groups requires solubilization of the membranes and subsequent reconstitution by precipitation with Mn2+ in order to remove contaminating peripheral proteins, which are also labelled. Control experiments with preparations in which the Class II groups are labelled demonstrate that the mobility and aggregation state of the enzyme in the reconstituted membranes are similar to those in the native membrane. Both the conventional maleimide nitroxide derivative and a new benzoylvinyl nitroxide derivative have been used for the labelling. The segmental mobility of the labels and the overall rotational diffusion of the labelled protein have been investigated using saturation transfer ESR spectroscopy. The benzoylvinyl spin-label derivative offers particular advantages for the study of the protein rotational mobility in that the segmental mobility is considerably reduced relative to that observed with the maleimide derivative. This is especially the case for the Class I groups, where the maleimide label exhibits pronounced segmental mobility. Comparison of the results from the two labels indicates that the integral of the saturation-transfer spectrum is much more sensitive to segmental motion than are the diagnostic line-height ratios. This fact allows a better level of discrimination between the two types of motion. The results from the benzoylvinyl nitroxide-labelled Class I groups suggest that the Na+/K+-ATPase is probably present as an (alpha beta)2-diprotomer (or higher oligomer) in the native membrane.  相似文献   

16.
Glyptal, a polyester obtained from phthalic anhydride and glycerol, was used as a support for protein immobilisation. Hydrazide groups were introduced in the polymer and then converted to azide groups, through which protein was covalently immobilised. Amyloglucosidase was used as a model and an insoluble water derivative was synthesised retaining 24 % of the specific activity of the native enzyme. Some properties of this immobilised enzyme were studied: Km (4.54 g.l–1 using starch as substrate), optimal temperature (55°C) and half life (8 days). Furthermore, ferromagnetic-azide-glyptal derivative showed to be useful for the amyloglucosidase immobilisation.  相似文献   

17.
A simple mathematic model describing the activation Na,K-ATPase system by univalent cations is proposed. The constants for the enzyme activation values by each of the ions in the presence of a fixed concentration of the other ion have been calculated. The substitution of these values into the common equation describing the behaviour of the whole system according to the given model gives the curve of Na,K-ATPase activity change in dependence of Na/K ration at the same total concentration 150 mM. The experimental points correspond to the curve.  相似文献   

18.
A functionally active human plasmin light (B) chain derivative, stabilized by the streptomyces plasmin inhibitor leupeptin, was isolated from a partially reduced and alkylated enzyme preparation by an affinity chromatography method with a L-lysine-substituted Sepharose column. This light (B) chain derivative was found to be relatively homogeneous by electrophoretic analysis in both an acrylamide gel/dodecyl sulfate system and on cellulose acetate. It possessed approximately 3% of the proteolytic activity (casein substrate) of the original enzyme, and it incorporated 0.09 mol of [3H]diisopropyl phosphorofluoridate per mol of protein. It contained 3.1 +/- 0.3 carboxymethylated cysteines per mol of protein and can be designated as a CmCys5-light (B) chain (CmCys)3. When this isolated light (B) chain derivative was mixed in equal molar amounts with streptokinase, the mixture developed both human and bovine plasminogen activator activities; the bovine activator activity was approximately 66% of the bovine activator activity of the equimolar human plasmin-streptokinase complex. Although this complex now incorporated 0.50 mol of [3H]diisopropyl phosphorofluoridate per mol of protein, its proteolytic activity, on a molar basis, was the same as the proteolytic activity of the isolated light (B) chain derivative. It was shown by electrophoretic analysis in both an acrylamide gel/epsilon-aminocaproic acid system and on cellulose acetate that the light (B) chain derivative and streptokinase forms an equimolar light (B) chain-streptokinase complex, indicating that the binding site for streptokinase is located on the light (B) chain of the enzyme. A functionally active equimolar light (B) chain-streptokinase complex was also isolated from a partially reduced and alkylated equimolar human plasmin-streptokinase complex by the affinity chromatography method. The plasminogen activator activities (human and bovine) of this light (B) chain-streptokinase complex were similar to those of the plasmin-streptokinase complex from which it was derived. Although this complex incorporated 0.70 mol of [3H]diisopropyl phosphorofluoridate per mol of protein, its proteolytic activity, on a molar basis, was only 14% of proteolytic activity of the plasmin-streptokinase complex.  相似文献   

19.
3-SLHis-105-RNase A is an active derivative of ribonuclease A (RNase A) spin-labeled at the 3 position of the imidazole ring of histidine-105. The spin-labeled enzyme has been modified by urea denaturation, reduction, reduction-carboxymethylation, performic acid oxidation, and digestion with proteolytic enzymes in order to monitor changes in the geometry of the protein by changes in the electron paramagnetic resonance (EPR) spectrum of the nitroxide spin-label probe. The results of these experiments indicate that the spin-label attached to histidine-105 of RNase A is sensitive to modifications affecting the conformational integrity of the molecule and to the reconstituting effects of various active-center ligands.  相似文献   

20.
A theoretical model is developed for an electrochemical sensor for toxic substances which works by measuring the inhibition of the enzyme activity. The enzyme is assumed to follow Michaelis-Menten kinetics and the diffusion kinetic equation describing the concentration profile of the enzyme's substrate in the electrolyte layer between the electrode and the membrane covering the electrode is solved. A complete set of analytical solutions is found which corresponds to a number of different rate limiting processes. The set of solutions is described in a case diagram. The use of cytochrome oxidase in particular is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号