首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Now that transgenic strains of Xenopus laevis and X. tropicalis can be generated efficiently and with genomic sequence resources available for X. tropicalis, early amphibian development can be studied using integrated biochemical and genetic approaches. However, housing large numbers of animals generated during genetic screens or produced as novel transgenic lines presents a considerable challenge. We describe a method for cryopreserving Xenopus sperm that should facilitate low maintenance, long-term storage of male gametes. By optimising the cryoprotectant, the rates of cooling and thawing, and conditions for fertilisation, sperm from the equivalent of one-eighth of a X. laevis testis or of two X. tropicalis testes have been cryopreserved and used to fertilise eggs of both species after thawing. Sperm undergo a substantial loss of viability during a freeze-thaw cycle, but sufficient survive to fertilise eggs. Gametes of mutagenised frogs are being stored in connection with a screen for developmental mutations.  相似文献   

3.
4.
To convert animal pole cells of a frog embryo from an ectodermal fate into a neural one, inductive signals are necessary. The alkalizing agent NH4Cl induces the expression of several anterior brain markers and the early pituitary marker XANF-2 in Xenopus animal caps. Here it is demonstrated that NH4Cl also induced proopiomelanocortin (POMC)-expressing cells (the first fully differentiated pituitary cell type) in stage 9 and 10 Xenopus animal caps, and that all-trans retinoic acid, a posteriorizing agent, was able to block this induction when it was administered within 2 h after the start of NH4Cl incubation. Thus, after 2 h, the fate of Xenopus animal cap cells was determined. Microinjection of ribonucleic acid (RNA) encoding noggin, an endogenous neural inducer, led to the induction of POMC gene expression in animal caps of stage 10 embryos, suggesting that noggin represents a candidate mesodermal signal leading to the POMC messenger (m) RNA producing cell type in uncommitted ectoderm. Hence, an alkalizing agent and a neural inducer can generate a fully differentiated POMC cell lineage from Xenopus animal caps.  相似文献   

5.
Fractionation of the β-endorphin-sized material from freshly dissected reptile intermediate pituitaries by ion exchange chromatography on sulfopropyl Sephadex (SP) revealed at least three distinct forms of immunoreactive β-endorphin. These forms eluted at 0.25 M NaCl, 0.28 M NaCl, and 0.32 M NaCl and represent respectively, 6%, 65% and 29% of the total immunoreactivity. Only the 0.28 M NaCl peak and the 0.32 M NaCl peak exhibited naloxone reversible opiate bioactivity when tested in the isolated guinea pig ileum bioassay system; taking into account the molar amount of immunoreactive peptides the 0.32 M NaCl peak was 6 fold more potent than the 0.28 M NaCl peak. Intermediate pituitaries in culture were incubated with either [3H]tyrosine, [3H]arginine, or [35S]methionine for periods up to 24 hours and β-endorphin-sized peptides were prepared by immunoprecipitation and gel filtration. Fractionation of the labeled β-endorphin-sized peptides by ion exchange chromatography yielded profiles nearly identical to the immunoassay analyses of freshly dissected tissue. Further analysis of the major labeled forms of reptile β-endorphin by chromatography on Sephadex G-50 equilibrated in 6 M guanidine HCl indicated that the 0.32 M NaCl peak had an apparent molecular weight of 3500±100 and the 0.28 M NaCl peak had an apparent molecular weight of 3200±100. Furthermore, pulse/chase experiments showed that the 0.32 M NaCl peak was the precursor for the 0.28 M NaCl peak. These results coupled with the relative opiate bioactivities of the major forms argue that the principal post-translational modification of reptile β-endorphin is COOH-terminal proteolytic cleavage.  相似文献   

6.
We have used an antiserum for immunohistochemistry and RIA/RP-HPLC which recognizes all fragments of N-acetylated endorphin (NacEP). In the rat neurointermediate lobe (N-IL), in addition to the N-acetylated forms of immunoreactive-β-endorphin (ir-βEP) already reported, we have demonstrated NacβEP1–17 as a minor component. In the sheep pituitary processing of βEP is markedly different. In the anterior pituitary (AP), staining was indistinguishable with βEP and NacEP antisera, in contrast with the rat where many fewer AP cells stained with the NacEP antiserum. Secondly, as in the rat, all N-IL cells stained with both antisera; on RP-HPLC, however, the major forms of NacEP in the sheep N-IL were NacβEP1–17 (40%), NacβEP1–27 (25%) and NacβEP1–16 (20%), with NacβEP1–31 (2%) as a minor component. A similar profile was seen on RP-HPLC of sheep AP. These data suggest that (1) patterns of processing in sheep AP are similar to those in N-IL, though the extent of acetylation is less and (2) in the sheep pituitary low molecular weight acetylated fragments predominate, in contrast with the rat.  相似文献   

7.
Fractionation of an acid extract of 15 B. marinus intermediate pituitaries by a combination of gel filtration chromatography and cation exchange chromatography revealed one major and five minor forms of β-endorphin in this tissue. Based on reversed-phase HPLC and immunological properties, as well as amino acid composition and primary sequence analysis, it was deduced that the sequence of the major form of B. marinus β-endorphin is N-acetyl-YGGFMTPE. Overall, the steady-state analyses of the minor forms of β-endorphin indicated that the posttranslational processing of β-endorphin in the toad intermediate pituitary includes endoproteolytic cleavage at both paired basic and monobasic cleavage sites.  相似文献   

8.
克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1—3基因在发育的脑和眼中的表达图式。序列比对分析显示Sox1—3蛋白在其HMG框结构域具有高度的保守性。通过RT-PCR方法分析了Sox1基因在爪蟾早期不同发育时段的表达情况,结果显示Sox1基因从未受精卵到尾芽期均有表达,但表达强度有所差异。原位杂交结果显示,在早期卵裂阶段和囊胚期,Sox1基因主要在动物极表达;从神经板期开始,Sox1基因主要在中枢神经系统和眼原基中表达。在蝌蚪期,Sox1与Sox2、Sox3在脑部和眼睛的表达区域有所不同。对于爪蟾Sox1基因时空表达图式的研究将有助于阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。  相似文献   

9.
Certain neuropeptides previously linked to stress and implicated in CNS control of analgesia/algesia were tested using a recently developed analgesiometric model, the rabbit ear-withdrawal test. The latency to ear withdrawal increased in a dose-related manner after β-endorphin was injected intracerebroventricularly (IVC). Intermediate doses (0.5 and 1.0 μg) of adrenocorticotropic hormone (ACTH) caused hyperalgesia as indicated by decreases in latency. Corticotropin-releasing factor (CRF, 0.5 and 1.0 μg) also caused significant hyperalgesia late in the testing period. -Melanocyte stimulating hormone (-MSH, 0.25–2.0 μg), a molecule that shares the first 13 amino acid sequence with ACTH, and somatostatin (0.25–2.0 μg), caused no significant change in latency. However, 1.0 μg doses of each peptide antagonized the analgesic effect of β-endorphin (1.0 μg) in the following order of potency: ACTH = -MSH > CRF > somatostatin. The results support the idea that CNS peptides that are released during stress can exert opposing actions on acute pain, even though they may cause little effect alone.  相似文献   

10.
The present study used a molecular approach toward understanding the mechanism of hormone- and region-dependent remodeling of the small intestine during metamorphosis of Xenopus laevis . A protein spot was noticed on a two-dimensional polyacrylamide gel as a protein whose expression was metamorphic stage- and region-dependent. The protein was identified as the Xenopus homolog (Xcalbindin) of chick calbindin D28k. Xcalbindin expression in the intestine was restricted to absorptive cells in the posterior part, being detectable at stages 49–61, not detectable at stages 62–63, detectable again at stages 64–66, and finally becoming undetectable in the adult. During spontaneous metamorphosis, the level of Xcalbindin mRNA was significantly increased between stages 57 and 58, dramatically reduced at stage 59, and the mRNA was undetectable from stages 60–63, after which it was weakly re-expressed until the end of metamorphosis. Such up- and down-regulation of Xcalbindin mRNA was induced precociously by exogenous thyroid hormone. These results indicated that Xcalbindin is a specific marker of the differentiated absorptive cells of the intestine. Immunohistochemistry with specific antibodies against Xcalbindin demonstrated that precursor cells of adult intestinal epithelial cells expressed Xcalbindin. Considering these results, the origin of adult intestinal epithelial cells was discussed.  相似文献   

11.
Upon transfer of Xenopus laevis from a white to a black background, the melanotrope cells in the pituitary pars intermedia secrete α‐melanocyte‐stimulating hormone, which stimulates dispersion of melanin pigment in skin melanophores. This adaptive behavior is under the control of neurotransmitters and neuropeptides of hypothalamic origin. The α‐melanocyte‐stimulating hormone‐producing cells and their hypothalamic control system provide an interesting model to study proteins required for biosynthetic and secretory processes involved in peptide hormone production and for brain–pituitary signaling. We present a 2‐D PAGE‐based proteome map of melanotrope cells from black‐adapted animals, identifying 204 different proteins by MS analysis.  相似文献   

12.
alpha-Endorphin and gamma-endorphin, two closely related peptides of the pro-opiomelanocortin family with characteristic biological activities, were purified to homogeneity from single human pituitary glands and chemically identified. Isolation of the peptides was based on size fractionation by Sephadex G-75 chromatography followed by two HPLC steps using reverse-phase and paired-ion reverse-phase systems and was monitored by radioimmunoassay. During the isolation procedure alpha- and gamma-endorphin-sized material behaved chromatographically and immunologically indistinguishably from synthetic alpha- and gamma-endorphin. The amino acid composition and NH2-terminus of isolated peptides demonstrated their identity as authentic alpha-endorphin and gamma-endorphin. Acetylated forms were absent. In addition, evidence is provided that large forms with alpha- and gamma-endorphin immunoreactivity detected during gel filtration are human lipotropin-(1-74) and -(1-75), respectively. The data substantiate that alpha-endorphin and gamma-endorphin exist as endogenous peptides in the human pituitary gland.  相似文献   

13.
A reproducible and effective method for fertilization eggs of Xenopus laevis was developed based of systematic manipulation of environmental factors. The effects of varying concentrations of individual components of a fertilization medium were tested by measuring jelly swelling, sperm motility, and sperm longevity. Results were used to develop an improved medium for fertilization, consisting of 41.25 mM NaCl, 1.25 mM KCl, 0.25 mM CaCl2, 0.0625 mM MgCl2, 0.5 mM Na2HPO4, 2.5 mM HEPES, 1.9 mM NaOH, final pH(2°) 7.8.  相似文献   

14.
15.
The immunolocalization of An3 protein, an ATP-dependent RNA helicase and a member of the DEAD box family, was compared with the localization of fibrillarin, a protein essential for rRNA processing, and snRNPs, which are involved in mRNA splicing reactions, during oogenesis and embryogenesis in Xenopus laevis. Although An3 protein was detected in the cytoplasm of all stages of oocytes, in most stages An3 protein was also present in the nucleus. Prior to stage I An3 protein was uniformly dispersed throughout the entire germinal vesicle; from stages I to V it was in nucleoli. By stage VI nucleolar labeling with anti An3 disappeared and the protein was no longer present within nuclei. An3 reactivity was also present throughout the nuclei of follicle cells surrounding prestage I to stage VI oocytes. Both cytoplasmic and nuclear An3 staining were present in cells of stages 8 to 35 embryos; however, nuclear staining was punctate and uniformly distributed throughout the nucleoplasm. Fibrillarin was diffusely distributed throughout the entire germinal vesicle prior to stage I, localized exclusively to nucleoli of oocytes between stages I and VI and in nucleoli of stages 12 and 35 embryonic cells. Reactivity for snRNPs (anti-Sm) in germinal vesicles of prestage I oocytes was diffuse, and similar to the distribution of An3 and fibrillarin; in later stage oocytes anti-Sm staining was restricted to a population of granules, much fewer in number and more heterogeneous in size than nucleoli. Anti-Sm activity was apparent in nuclei of embryonic cells of stages 8 to 35 embryos. Although colocalization of the Sm epitope and An3 was not observed in developing oocytes and in embryonic cells, Sm reactive material was frequently found in close association with An3-positive nucleoli (oocytes) and nuclear deposits (embryonic cells). In stage IV and V oocytes treated with actinomycin D (4 μg/ml) to inhibit rRNA synthesis, nucleoli, which continued to possess fibrillarin, lacked An3; staining of follicle cell nuclei for An3 was unchanged. Treatment with 200 μg/ml actinomycin D to block mRNA synthesis, inhibited An3 but not fibrillarin staining in nuclei of prestage I oocytes and follicle cells. The changing patterns of An3 reactivity and the differential effects of actinomycin D on such localizations observed here are consistent with a role for An3 in the processing/production of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.  相似文献   

17.
通过凝胶过滤层析及两步阴离子交换层析,从非洲爪蟾(Xenopus laevis)的血清中获得了其68kDa的血清白蛋白。与大蹼铃蟾血清白蛋白相似,非洲爪蟾血清白蛋白也具有抑制胰蛋白酶的活性,但其抑制活力相对较低,180nmol/L的非洲爪蟾血清白蛋白能抑制84%的胰蛋白酶活性(30nmol/L)。经表面等离子共振法获得了其与胰蛋白酶的结合动力学常数,解离平衡常数KD=1.44×10-6mol/L。经Western blot分析发现,非洲爪蟾的皮肤中也分布有血清白蛋白。推测两栖类动物血清白蛋白具有的胰蛋白酶抑制活性可能是其抵御天敌捕食的一种防御措施。  相似文献   

18.
Urodele amphibians and some fish are capable of regenerating up to a quarter of their heart tissue after cardiac injury. While many anuran amphibians like Xenopus laevis are not capable of such feats, they are able to repair lesser levels of cardiac damage, such as that caused by oxidative stress, to a far greater degree than mammals. Using an optogenetic stress induction model that utilizes the protein KillerRed, we have investigated the extent to which mechanisms of cardiac regeneration are conserved during the restoration of normal heart morphology post oxidative stress in X. laevis tadpoles. We focused particularly on the processes of cardiomyocyte proliferation and dedifferentiation, as well as the pathways that facilitate the regulation of these processes. The cardiac response to KillerRed-induced injury in X. laevis tadpole hearts consists of a phase dominated by indicators of cardiac stress, followed by a repair-like phase with characteristics similar to mechanisms of cardiac regeneration in urodeles and fish. In the latter phase, we found markers associated with partial dedifferentiation and cardiomyocyte proliferation in the injured tadpole heart, which, unlike in regenerating hearts, are not dependent on Notch or retinoic acid signaling. Ultimately, the X. laevis cardiac response to KillerRed-induced oxidative stress shares characteristics with both mammalian and urodele/fish repair mechanisms, but is nonetheless a unique form of recovery, occupying an intermediate place on the spectrum of cardiac regenerative ability. An understanding of how Xenopus repairs cardiac damage can help bridge the gap between mammals and urodeles and contribute to new methods of treating heart disease.  相似文献   

19.
Dactylysin (EC 3.5.24.60) is a metalloendopeptidase first isolated from the skin granular gland secretions of Xenopus laevis. This peptidase hydrolyzes bonds on the amino-terminus of singlets and between doublets of hydrophobic amino acids and was considered to play a role in the in vivo inactivation of biologically active regulatory peptides. Here, we show that dactylysin has also the ability to cleave human β[1-40]-amyloid peptide and related peptides. Cleavage of the wild type β[1-40]-amyloid peptide form, and to a lesser extent Flemish and Dutch mutants, occurred predominantly at the His14-Glu15 bond. We demonstrate that frog skin exudate contains a full-length amyloid protein precursor detected by immunochemical cross-reactivity with monoclonal antibody against C-terminal human amyloid protein precursor. The possibility that dactylysin, might be involved in normal catabolism of β amyloid peptide of Xenopus laevis is discussed.  相似文献   

20.
Mature Xenopus laevis spermatozoa are capable of binding plasmid pAPrC carrying the complete Rous sarcoma virus (RSV) DNA. Each sperm cell associates, on an average, with 70–160 molecules of the plasmid DNA in a DNase resistant form, if the spermatozoa were exposed to the DNA at a concentration of 1.0–1.4 μg/107 sperm cells. Fertilization with pAPrC-treated spermatozoa induced developmental malformations in 25–30% of embryos. Immunohistochemical analysis of tissue sections from defective animals revealed aberrations in myotomal structures, and increased expression of pp60src protein in myoblasts, neuronal tube, and epidermis. The presence of characteristic v-src and RSV-long terminal repeat (LTR) sequences in X. laevis DNA was detected by PCR analysis. Embryonic RNA hybridized with a src-specific and an RSV-LTR specific probes indicating expression of the viral DNA. Plasmid DNAs without the v-src gene (pATV9) or completely free of any RSV sequences (pBR322) did not induce any changes in embryonic development. Our results provide evidence that the pBR322-cloned DNA form of the RSV genome associates with frog sperm cells in a DNase-resistant manner suggesting internalization and may be subsequently carried into eggs during the process of artificial fertilization. Correlation between the defective morphogenesis of X. laevis and increased expression of the src gene as well as an interference of RSV DNA with the developmental programs of frog embryos are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号