首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

2.
3.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

4.
5.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

6.
Regulatory T cells play essential roles in inducing self-tolerance by suppressing immune responses against self such as autoantigens or non-self-antigens such as tumor and pathogenic antigens. Despite the importance of CD4(+) regulatory T cells in many immune-related diseases, their antigen specificity and suppressive mechanisms remain elusive. This review discusses the natural ligands and their potential roles of tumor-specific CD4(+) regulatory T cells in cancer therapy.  相似文献   

7.
CD4+CD25+ regulatory T cells (TRegs) are critical for the acquisition of peripheral allograft tolerance. However, it is unclear whether TRegs are capable of mediating alloantigen-specific suppressive effects and, hence, contributing to the specificity of the tolerant state. In the current report we have used the ABM TCR transgenic (Tg) system, a C57BL/6-derived strain in which CD4+ T cells directly recognize the allogeneic MHC-II molecule I-A(bm12), to assess the capacity of TRegs to mediate allospecific effects. In these mice, 5-6% of Tg CD4+ T cells exhibit conventional markers of the TReg phenotype. ABM TRegs are more effective than wild-type polyclonal TRegs at suppressing effector immune responses directed against I-A(bm12) alloantigen both in vitro and in vivo. In contrast, they are incapable of suppressing responses directed against third-party alloantigens unless these are expressed in the same allograft as I-A(bm12). Taken together, our results indicate that in transplantation, TReg function is dependent on TCR stimulation, providing definitive evidence for their specificity in the regulation of alloimmune responses.  相似文献   

8.
Both differentiation and function of CD4+CD25(high) naturally arising regulatory T cells (Treg), which play a key role in the control of autoimmunity, are thought to depend on TCR specificity. In the present study, we comparatively measured the alphabetaTCR repertoire sizes of human peripheral blood Treg and CD4+CD25- T cells by using a methodology based on PCR amplification and sequencing analysis. We show that Treg use a large unrestricted alphabeta TCR repertoire, the size and diversity of which are closely similar to those of CD4+CD25- T cells, with a mean estimated size of 3.5 x 10(6) distinct alphabeta TCR vs 4.7 x 10(6) distinct alphabetaTCR for CD4+CD25- T cells. In addition, a 24% overlap between the repertoires of these two CD4+ subsets in the periphery is found. These data emphasize the intersection between naturally occurring Treg and effector T cell peripheral repertoires and provide new insights into the ontogeny of Treg in humans.  相似文献   

9.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

10.
11.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

12.
Cohen JL  Salomon BL 《Cytotherapy》2005,7(2):166-170
The subpopulation of CD4+ CD25+ immunoregulatory T cells constitutes less than of the entire CD4+ T-cell pool in mice and 2% in humans. These cells play a crucial role in the control of autoimmune processes. More recently, in vitro and in vivo data also indicate that CD4+ CD25+ immunoregulatory T cells can regulate alloreactivity. This renders them good candidates for innovative strategies in the field of transplantation. Inducing a state of immune tolerance with immunoregulatory T cells would alleviate the need for immunosuppression, and the occurrence of late allograft failure represents a major goal of transplantation immunology. Here we discuss how these naturally occurring CD4+ CD25+ immunoregulatory T cells can be used to modulate alloreactivity in hematopoietic stem cell and solid organ transplantation.  相似文献   

13.
Chicken CD4(+)CD25(+) cells were characterized for mammalian regulatory T cells' suppressive and cytokine production properties. Anti-chicken CD25 mAb was produced in mice and conjugated with a fluorescent tag. The specificity of the Ab against chicken CD25 was confirmed by evaluating Con A-induced CD25 upregulation in thymocytes and by quantifying the CD25 mRNA content of positive and negative cells identified by anti-chicken CD25 Ab. The percentage of CD4(+)CD25(+) cells, expressed as a percentage of CD4(+) cells, in thymus and blood was ~3-7%, in spleen was 10%, and in cecal tonsil, lung, and bone marrow was ~15%. Bursa had no detectable CD4(+)CD25(+) cells. CD25(+) cells were mostly CD4(+) in the thymus, whereas in every other organ studied, CD25(+) cells were distributed between CD4(+) and CD4(-) cells. Chicken thymic CD4(+)CD25(+) cells did not proliferate in vitro in the absence of recombinant chicken IL-2 (rCIL-2). In the presence of rCIL-2, PMA plus ionomycin or Con A stimulated CD4(+)CD25(+) cell proliferation, whereas anti-CD3 plus CD28 did not stimulate CD4(+)CD25(+) cell proliferation. Naive CD4(+)CD25(+) cells had 29-fold more IL-10 mRNA and 15-fold more TGF-β mRNA than the naive CD4(+)CD25(-) cells. Naive CD4(+)CD25(+) had no detectable IL-2 mRNA. Both naive and PMA plus ionomycin-stimulated thymic CD4(+)CD25(+) cells suppressed naive T cell proliferation. The suppressive properties were partially contact dependent. Supplementing CD4(+)CD25(+) cell coculture with rCIL-2 reversed the suppressive properties of CD4(+)CD25(+) cells. Chicken CD4(+)CD25(+) cells have suppressive properties similar to that of mammalian regulatory T cells.  相似文献   

14.
CD4+CD25+ regulatory T cells control innate immune reactivity after injury   总被引:10,自引:0,他引:10  
Major injury initiates a systemic inflammatory response that can be detrimental to the host. We have recently reported that burn injury primes innate immune cells for a progressive increase in TLR4 and TLR2 agonist-induced proinflammatory cytokine production and that this inflammatory phenotype is exaggerated in adaptive immune system-deficient (Rag1(-/-)) mice. The present study uses a series of adoptive transfer experiments to determine which adaptive immune cell type(s) has the capacity to control innate inflammatory responses after injury. We first compared the relative changes in TLR4- and TLR2-induced TNF-alpha, IL-1beta, and IL-6 production by spleen cell populations prepared from wild-type (WT), Rag1(-/-), CD4(-/-), or CD8(-/-) mice 7 days after sham or burn injury. Our findings indicated that splenocytes prepared from burn-injured CD8(-/-) mice displayed TLR-induced cytokine production levels similar to those in WT mice. In contrast, spleen cells from burn-injured CD4(-/-) mice produced cytokines at significantly higher levels, equivalent to those in Rag1(-/-) mice. Moreover, reconstitution of Rag1(-/-) or CD4(-/-) mice with WT CD4(+) T cells reduced postinjury cytokine production to WT levels. Additional separation of CD4(+) T cells into CD4(+)CD25(+) and CD4(+)CD25(-) subpopulations before their adoptive transfer into Rag1(-/-) mice showed that CD4(+)CD25(+) T cells were capable of reducing TLR-stimulated cytokine production levels to WT levels, whereas CD4(+)CD25(-) T cells had no regulatory effect. These findings suggest a previously unsuspected role for CD4(+)CD25(+) T regulatory cells in controlling host inflammatory responses after injury.  相似文献   

15.
Prior reports have shown that CD4(+)CD25(+) regulatory T cells suppress naive T cell responses by inhibiting IL-2 production. In this report, using an Ag-specific TCR transgenic system, we show that naive T cells stimulated with cognate Ag in the presence of preactivated CD4(+)CD25(+) T cells also become refractory to the mitogenic effects of IL-2. T cells stimulated in the presence of regulatory T cells up-regulated high affinity IL-2R, but failed to produce IL-2, express cyclins or c-Myc, or exit G(0)-G(1). Exogenous IL-2 failed to break the mitotic block, demonstrating that the IL-2 production failure was not wholly responsible for the proliferation defect. This IL-2 unresponsiveness did not require the continuous presence of CD4(+)CD25(+) regulatory T cells. The majority of responder T cells reisolated after coculture with regulatory cells failed to proliferate in response to IL-2, but were not anergic and proliferated in response to Ag. The mitotic block was also dissociated from the antiapoptotic effects of IL-2, because IL-2 still promoted the survival of T cells that had been cocultured with CD4(+)CD25(+) T cells. IL-2-induced STAT5 phosphorylation in the cocultured responder cells was intact, implying that the effects of the regulatory cells were downstream of receptor activation. Our results therefore show that T cell activation in the presence of CD4(+)CD25(+) regulatory T cells can induce an alternative stimulation program characterized by up-regulation of high affinity IL-2R, but a failure to produce IL-2, and uncoupling of the mitogenic and antiapoptotic effects of IL-2.  相似文献   

16.
CD4+CD25+调节性T细胞的作用机制及临床应用   总被引:1,自引:0,他引:1  
范春妹  钱旻 《生命的化学》2004,24(6):479-481
免疫应答通常是机体对各种异源物质的重要防御机制.但有些免疫应答会造成机体的损伤.近来,大量研究发现免疫系统内存在一类CD4 CD25 调节性T淋巴(CD4 CD25 regulatory T cell,CD4 CD25 TReg),在阻止大量免疫介导的疾病中起重要作用.该文从自身免疫耐受、维持T细胞自稳态、肿瘤免疫等方面介绍这类细胞的免疫调节作用.  相似文献   

17.
In normal mice, a subpopulation of CD4 T cells constitutively express CD25. These cells behave as regulatory T cells in autoimmune and inflammatory reactions, in tolerance to superantigens, and in peripheral T-cell homeostasis. They are unable to produce interleukin (IL)-2, and are dependent on IL-2 for growth in vitro and in vivo. CD4 CD25(+) T cells spontaneously secrete IL-10, which is involved in some of their regulatory functions. They are resistant to apoptosis, but can be tolerized by anergy.  相似文献   

18.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

19.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号