首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The relationship between partial inhibition of mitochondrial ATP production during the peri-compaction stage and porcine embryonic development was studied. In vitro produced porcine compact morulae were cultured for two days under conditions that should inhibit ATP production via oxidative phosphorylation. The culture conditions included supplementation of the culture medium with sodium azide (NaN3), an oxidative phosphorylation inhibitor; incubation in the presence of 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation; or incubation under 5% O2 concentration. NaN3 (10-20 microM) increased the average nuclear number found in the resulting blastocysts (P<0.05). The embryos developed in the presence of 100 microM DNP formed blastocysts at a significantly higher incidence than the control embryos (P<0.001); the average nuclear number found in these blastocysts was also higher (P<0.005). When these treatments were applied from the 1-cell stage they proved to be detrimental. Elevations in the frequency of blastocyst formation (P<0.05), and in the average nuclear number per blastocyst (P<0.001) were also measured when compact morulae were incubated in an atmosphere containing 5% vs. 20% O2. NaN3 or DNP did not have negative effects on long term development: the treated embryos were able to form viable conceptuses by day 30 after being transferred into recipients. The data indicate that transient inhibition of mitochondrial ATP production is advantageous for porcine embryonic development in vitro.  相似文献   

2.
Oligomycin, antimycin, and 2,4-dinitrophenol, compounds that are known to inhibit oxidative phosphorylation by different mechanisms, inhibit the production of prostaglandins by serum-stimulated MC5-5 cells. The prostaglandin production that is stimulated by thrombin and bradykinin is inhibited by 2,4-dinitrophenol. Prostaglandin synthesis by MC5-5 cells from exogenously-supplied arachidonic acid, however, is not affected by 2,4-dinitrophenol. Antimycin and 2,4-dinitrophenol also inhibit the serum-stimulated release of arachidonic acid from the cellular lipids, suggesting that it is the expression of phospholipase activity, a prerequisite for synthesis of prostaglandins by MC5-5 cells, that is dependent on oxidative phosphorylation.  相似文献   

3.
Previous studies with lung homogenates have suggested that pulmonary O2 toxicity is in part a result of inhibited mitochondrial energy metabolism. In this study, mitochondrial metabolism was determined by measurements of 14CO2 production from [1-14C]-pyruvate in perfused lungs, isolated after 0, 3, 6, 12, and 24 h of exposure to 100% O2. Measurements were made under normal and stimulated conditions brought about by uncoupling oxidative phosphorylation with 2,4-dinitrophenol (DNP). Lungs were ventilated with 5% CO2 in O2 and perfused for 100 min with 12.5 mM 14C labeled pyruvate. Unexposed lungs gave a linear rate of 14CO2 production of 121 +/- 16 mumol/h/g dry wt (n = 5), which was maximally stimulated 84% by perfusion with 0.8 mMDNP. Twenty-four hours of exposure to 100% O2 did not significantly affect 14CO2 production. In contrast, DNP failed to significantly stimulate pyruvate metabolism to CO2 in lungs exposed for greater than 3 h to 100% O2. These latter data suggested that O2 exposure makes lung mitochondria unable to respond to increased ATP demands associated with DNP uncoupling. Compromised energy metabolism is therefore an important early event in O2 toxicity.  相似文献   

4.
5.
Godfrey Maina 《BBA》1974,333(3):481-486
1. Reserpine, like the uncoupling agent, 2,4-dinitrophenol prevents oxidative phosphorylation but stimulates the rate at which oxygen is reduced.

2. Both reserpine and 2,4-dinitrophenol fail to stimulate oxygen uptake by isolated mitochondria in the presence of arginine.

3. Both 2,4-dinitrophenol and reserpine induce proton permeability in the mitochondrial membrane so that H+ is absorbed from the suspending medium.

4. When the reaction system contains reserpine, accumulation of Ca2+ by mitochondria is inhibited.

5. Reserpine decreases both ADP:O and P:O ratios which strongly suggest that reserpine is an uncoupling agent.  相似文献   


6.
The translational motility of Pseudomonas fluorescens was weakly inhibited by oligomycin, Dicumarol, 2,4-dinitrophenol, 2n-heptyl-4-hydroxyquinoline N-oxide, and potassium cyanide. Atabrine and antimycin A together with potassium cyanide immediately immobilized this bacterium, but antimycin A alone was without effect. Gramicidin D also immobilized P. fluorescens, but its action was inhibited by K(+) and NH(4) (+) ions. In like manner, the effect of p-chloromercuribenzoate could be counteracted with cysteine, thereby suggesting the involvement of -SH groups in flagellar motility processes. It appears that the energy required for motility of P. fluorescens is generated by oxidative phosphorylation mediated by the cytochrome system.  相似文献   

7.
The effects of direct and indirect activation of adenylyl cyclase on the production of intracellular and extracellular cAMP and cGMP by 13- to 16-day-old cattle embryos were determined. Embryos were incubated for 2 h in a Krebs Ringer bicarbonate medium containing the phosphodiesterase inhibitor isobutyl-methylxanthine, to which stimulating agents forskolin (100 mumol l-1), cholera toxin (2 micrograms ml-1), or both were added. Total (intra- and extracellular) basal cAMP and cGMP concentrations ranged from 6.65 +/- 0.895 to 3.4 +/- 0.708 fmol microgram-1 protein in 13-day-old embryos and from 4.05 +/- 1.151 to 0.19 +/- 0.041 fmol microgram-1 protein in 16-day-old embryos. Forskolin induced an increase (P < 0.001) in cAMP that ranged from 5.4-fold on day 13 to 2.7-fold on day 16, whereas cholera toxin induced an increase (P < 0.001) that ranged from 30-fold at day 13 to 21-fold at day 16, similar to the effect of forskolin and cholera toxin combined. Individually, forskolin and cholera toxin had no effect on cGMP concentrations, but together they induced an increase (P < 0.05). cAMP (P < 0.01) and cGMP (P < 0.001) concentrations decreased with embryo age from day 13 to day 16 for all treatments; the decrease was greater for cGMP than cAMP (5-24-fold versus 1.6-3.3-fold, respectively). It is concluded that inducible adenylyl cyclase is present in 13- to 16-day-old cattle embryos and that the embryos secrete cAMP and cGMP into the incubation medium. In addition, basal and inducible concentrations of cAMP and cGMP decrease with embryo age from day 13 to day 16. These observations indicate that cAMP and cGMP may have a role in the rapid embryonic cell proliferation that occurs at this time or in signalling to the endometrium.  相似文献   

8.
Protection of Nitrogenase in Azotobacter vinelandii   总被引:2,自引:2,他引:0  
The site or sites that protect nitrogenase from O(2) inactivation in vivo are sensitive to sodium azide or 2,4-dinitrophenol. Both components of nitrogenase can be synthesized when oxidative phosphorylation is disrupted.  相似文献   

9.
The effects of beta-mercaptoethanol (beta-ME) on in vitro development under oxidative stress and cystine uptake of bovine embryos were investigated. Bovine 1-cell embryos obtained by in vitro fertilization were cultured in TCM-199 or synthetic oviductal fluid (SOF) in 20% O(2) supplemented with beta-ME. Addition of beta-ME significantly (P < 0.01) promoted embryo development when cultured in both TCM-199 and SOF under high levels of O(2), to almost the same rates when they were cultured in 5% O(2). To investigate whether the growth-promoting effect of beta-ME was related to cystine uptake, which is an important amino acid for intracellular glutathione (GSH) synthesis, 1-cell, 8-cell, morula, and blastocyst stage embryos were incubated in cystine, cysteine-free TCM-199 containing radioisotope-labeled cystine supplemented with or without beta-ME. It was found that cystine uptake was consistently low in each embryo stage incubated without beta-ME. In contrast, addition of beta-ME significantly (P < 0.05 to 0.0001) promoted cystine uptake in each stage of embryo development. This increase of cystine uptake by beta-ME was significantly inhibited by supplementation of buthionine sulfoximine, a specific inhibitor of GSH biosynthesis (P < 0.0001). High-performance liquid chromatography (HPLC) analysis clearly revealed a decrease of cystine in culture medium after supplementation by beta-ME, thereby forming another peak. HPLC analysis also showed the incorporated cystine by supplementation of beta-ME was possibly metabolized for GSH synthesis in the embryos. These results indicate that beta-ME has a protective effect in embryo development against oxidative stress and that the effect of beta-ME is associated with the promotion of cystine uptake of low availability in embryos.  相似文献   

10.
The requirements of a cloned macrophage-like cell line, J774.16, for oxygen metabolism, and the nature of the defect in oxidative metabolism in a variant clone derived from it, J774.C3C, were studied. Upon stimulation with phorbol myristate acetate (PMA), the parental clone produced approximately 1 nmol O2-/min/10(6) cells, whereas the variant clone produced no detectable O2- under the same conditions. Sustained O2- production by J774.16 was totally dependent on extracellular glucose; in glucose-free medium, the cells initiated O2- production but could not sustain it. When cells were stimulated with PMA, glucose-C-1 oxidation of J774.16 cells increased 20-fold while that of J774.C3C remained at resting levels. O2- production in J774.16 cells was inhibited by some agents known to block mitochondrial electron transport before coenzyme Q, such as rotenone and tetrathiafulvalene, whereas antimycin A enhanced O2- production. A dissociation between O2- production and glucose-C-1 oxidation was observed when J774.16 was treated with certain metabolic inhibitors. Quinacrine, 2,4-dinitrophenol, chlorpromazine, and trifluoperazine inhibited O2- production completely under conditions in which glucose-C-1 oxidation was reduced only by 30%. Rotenone inhibited O2- production with no effect on glucose-C-1 oxidation whereas antimycin A augmented O2- production 50% but inhibited glucose oxidation by 20%. Glucose transport studies, with 2-deoxy-D-glucose, showed that the Km for glucose transport of both clones was about 1 mM, indicating that cells could effectively transport glucose even at low concentrations. The Vmax for glucose transport in both J774.16 and variant J774.C3C cells doubled after PMA stimulation, indicating that the variant was effectively stimulated by PMA, even though O2- was not produced. Similarly, PMA induced protein phosphorylation in both clones. No differences between clones J774.16 and J774.C3C in hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase, or glutathione peroxidase activities could be found. When dithionite-reduced and -oxidized difference spectra of plasma membranes of these clones were compared, comparable levels of b-type cytochrome were found in both clones. However, CO difference spectra indicated that CO was bound to a b-type cytochrome (presumed to be b-245) in clone J774.16 but not in J774.C3C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Incubation of primary cultures of rat hepatocytes with the local anesthetics, procaine or lidocaine, had little or no effect on insulin uptake or degradation but caused an inhibition of insulin-stimulated glycogenesis. While exposure of cultures to the amines, monodansylcadaverine or CH3NH2, resulted in significant dose-dependent decreases in glycogenesis, only monodansylcadaverine (an inhibitor of receptor clustering) decreased uptake whereas CH3NH2 (a lysosomotropic agent) caused increases in both insulin uptake and degradation. When cells were treated with agents which inhibit glycolysis (NaF, 2-deoxy-D-glucose) or oxidative metabolism (2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone, NaN3, antimycin A), pronounced inhibitions of each of the bioactivities studied (syntheses of glycogen, protein, lipid) were observed, but only the glycolytic inhibitors decreased insulin uptake. These results suggest that insulin is internalized by an endocytotic process involving receptor clustering and requiring metabolic energy derived from glycolysis. The post-receptor biosynthetic processes involved in the expression of the biological activities of insulin (syntheses of glycogen, protein, lipid) require energy produced by oxidative metabolism while the degradation of insulin is carried out by nonlysosomal mechanisms which are not energy-requiring.  相似文献   

12.
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.  相似文献   

13.
Philip John  F. R. Whatley 《BBA》1970,216(2):342-352
A procedure is described for preparing particles from cells of Micrococcus denitrificans which were broken osmotically after treatment with lysozyme.

1. 1. The preparations catalysed ATP synthesis coupled to O2 uptake or NO3 reduction. With NADH or succinate as the electron donors the P:O ratios were about 1.5 and 0.5, respectively; and the P:NO3 ratios were about 0.9 and 0.06, respectively.

2. 2. Addition of ADP or Pi to the reaction mixture increased the rates of NADH-dependent O2 uptake and NO3 reduction. Addition of 1 mM 2,4-dinitrophenol, which inhibited phosphorylation by 50–60%, increased the basal rates of electron transport.

3. 3. Evidence derived from spectrophotometry and from the differential inhibition by antimycin A of O2 and NO3 reduction leads to the conclusion that the nitrate reductase interacted with the respiratory chain in the region of the b-type cytochrome, and that the c-type cytochrome present was not involved in the reduction of NO3 to NO2.

Abbreviations: TMPD; tetramethyl-p-phenylenediamine  相似文献   


14.
Mitochondria from Neurospora crassa, like mammalian mitochondria, carry out rapid, energy-linked K+ uptake and H+ release in the presence of valinomycin. The maximal rate of K+ uptake was about 1.0 mumol/mg of mitochondrial protein per min and was seen at valinomycin concentrations in the range of 100 to 200 mug per mg of mitochondrial protein and at K+ concentrations of 4 mM or above. Uptake could be supported either by substrate oxidation or by adenosine 5'-triphosphate (ATP), and was inhibited in the former case by antimycin or cyanide, in the latter case by oligomycin, and in both cases by 2,4-dinitrophenol. Mitochondria from the cytochrome-deficient mutant poky carried out substrate-driven K+ uptake at reduced rates, but oligomycin-sensitive, ATP-driven K+ uptake at rates about 60% greater than those shown by wild-type mitochondria. This result is consistent with the recent finding (Mainzer and Slayman 1976) that poky contains elevated amounts of oligomycin-sensitive mitochondrial adenosine 5'-triphosphatase activity.  相似文献   

15.
The influence of a number of inhibitors affecting respiration, oxidative phosphorylation, cAMP-phosphodiesterase and of the antioxidant 1,4-dithiothreitol on growth and photoinduced conidiation ofTrichoderma viride were investigated. In all cases, growth and conidiation were influenced to a different extent. Among the first group of compounds, antimycin A was the most potent inhibitor of conidiation while it influenced growth much less. A similar effect was obtained with 2,4-dinitrophenol and 1,4-dithiothreitol. On the other hand, 3-isobutyl-1-methylxanthine (inhibitor of phosphodiesterase) greatly stimulated the conidiation induced by light without affecting growth. It is concluded that the redox reactions represent a vital component of the differentiation pathway and that cAMP may play a regulatory role in this process.  相似文献   

16.
1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitchondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATP-ase activity was stimulated at higher concentrations of uncouplers. 2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response. 3. The addition of succinate, NADH or ascorbate/N,N,N'-N'-tetramethyl-p-phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin. 4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide-p-trifluoromethoxyphenylhydrazone at 10-8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin. 5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity. 6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.  相似文献   

17.
Phosphorylation of the serine/threonine kinase Akt has previously been shown to be increased by treatment of cells with H2O2; the target of H2O2 has not been clearly identified. Here we show that treatment of rat primary astrocytes with H2O2 resulted in increased Akt phosphorylation that was blocked by wortmannin. The thiol-reducing agent N-acetylcysteine had only a slight inhibitory effect. Treatment with rotenone or antimycin A also resulted in increased wortmannin-sensitive Akt phosphorylation, probably by increasing intracellular H2O2 generation by blocking mitochondrial electron transport. Addition of phosphatidylinositol 3,4-bisphosphate to cells also resulted in an increase in Akt phosphorylation. This increase was additive to that induced by H2O2 and was also blocked by wortmannin. These results suggest that activation of Akt by H2O2 occurs upstream of phosphatidylinositol 3-kinase (PI 3-K) activity in astrocytes. The data indicate that major oxidative effects do not occur at the level of the PI 3-K-antagonizing phosphatase PTEN.  相似文献   

18.
The recruitment into the cycling state of resting Yoshida AH 130 hepatoma cells was studied with respect to its dependence on respiration in an experimental system wherein the overall energy requirement for this recruitment can be supplied by the glycolytic ATP. The G1-S transition of these cells, unaffected by 2,4-dinitrophenol (DNP) at concentrations which uncouple the respiratory phosphorylation, is impaired either by blocking the electron flow to oxygen by antimycin A or by adding an excess of some oxidizable substrates, chiefly pyruvate and oxalacetate. An experimental analysis, focused on pyruvate activity, showed that the inhibition of cell recruitment into S is not related to the depressing effects of this substrate on aerobic glycolysis of tumor cells, nor is it modified by forcing, in the presence of DNP, pyruvate oxidation through the tricarboxylic acid cycle as well as the overall oxygen consumption. Addition of suitable concentrations of preformed purine bases (mainly adenine), completely removes the block of the G1-S transition produced either by the excess of oxidizable substrates or by antimycin A. These findings indicate the existence of a respiration-linked step in purine metabolism, which restricts the above transition and is equally impaired by blocking the respiratory chain or by saturating it with an excess of reducing equivalents derived from unrelated oxidations. The inhibitory effects of pyruvate and antimycin A can be largely removed by the addition of folate and tetrahydrofolate, suggesting that the respiration-linked restriction point of tumor cell cycling involves the folate metabolism and its connections to purine synthesis.  相似文献   

19.
Averufin and averufin dimethylether from Aspergillus versicolor were examined for their uncoupling effects on oxidative phosphorylation in isolated rat liver mitochondria to get insight into the mode of toxic action of averufin. Averufin uncoupled oxidative phosphorylation, causing 50% uncoupling at about 1.5 microM with respect to the decrease in P/O ratio. Averufin dimethylether did not uncouple but inhibited state 3 respiration of mitochondria, which was not released by either 2,4-dinitrophenol or averufin.  相似文献   

20.
Averufin and averufin dimethylether from Aspergillus versicolor were examined for their uncoupling effects on oxidative phosphorylation in isolated rat liver mitochondria to get insight into the mode of toxic action of averufin. Averufin uncoupled oxidative phosphorylation, causing 50% uncoupling at about 1.5 microM with respect to the decrease in P/O ratio. Averufin dimethylether did not uncouple but inhibited state 3 respiration of mitochondria, which was not released by either 2,4-dinitrophenol or averufin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号