首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the effect of resistance running on left cardiac ventricle size and rectus femoris muscle fiber composition. Ten male Wistar rats were trained on a treadmill 6 days per week for 12 weeks. Ten rats remained sedentary and served as controls. A higher endurance time (40%) and cardiac hypertrophy in the trained animals were indicators of training efficiency. Morphometric analysis of the left ventricle cross-sectional area, left ventricular wall, and left ventricular cavity were evaluated. The endurance-running group demonstrated a hypertrophy of the ventricular wall (22%) and an increase in the ventricular cavity (25%); (p<0.0001). Semi-quantitative analysis of rectus femoris fiber-type composition and of the oxidative and glycolytic capacity was histochemically performed. Endurance running demonstrated a significant (p<0.01) increase in the relative frequency of Type I (24%), Type IIA (8%) and Type IIX (16%) oxidative fibers, and a decrease in Type IIB (20%) glycolytic fibers. There was a hypertrophy of both oxidative and glycolytic fiber types. The relative cross-sectional area analysis demonstrated an increase in oxidative fibers and a decrease in glycolytic fibers (p<0.0001). Changes were especially evident for Type IIX oxidative-glycolytic fibers. The results of this study indicate that the left ventricle adapts to endurance running by increasing wall thickness and enlargement of the ventricular cavity. Skeletal muscle adapts to training by increasing oxidative fiber Type. This increase may be related to fiber transformation from Type IIB glycolytic to Type IIX oxidative fibers. These results open the possibility for the use of this type of exercise to prevent muscular atrophy associated with age or post-immobilization.  相似文献   

2.
3.
We have determined the effect of two exercise-training intensities on the phospholipid profile of both glycolytic and oxidative muscle fibers of female Sprague-Dawley rats using electrospray-ionization mass spectrometry. Animals were randomly divided into three training groups: control, which performed no exercise training; low-intensity (8 m/min) treadmill running; or high-intensity (28 m/min) treadmill running. All exercise-trained rats ran 1,000 m/session for 4 days/wk for 4 wk and were killed 48 h after the last training bout. Exercise training was found to produce no novel phospholipid species but was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus lateralis) muscle fibers. The largest observed change was a decrease of approximately 20% in the abundance of 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine [PE(18:0/22:6); P < 0.001] ions in both the low- and high-intensity training regimes in glycolytic fibers. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid [PA(18:1/18:2); P < 0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine [plasmenyl PE (16:0/18:2); P < 0.005] ions were also observed for both training regimes in glycolytic fibers. We conclude that exercise training results in a remodeling of phospholipids in rat skeletal muscle. Even though little is known about the physiological or pathophysiological role of specific phospholipid molecular species in skeletal muscle, it is likely that this remodeling will have an impact on a range of cellular functions.  相似文献   

4.
5.
There have been no systematic comparisons ofskeletal muscle adaptations in response to voluntary wheel runningunder controlled loading conditions. To accomplish this, a voluntaryrunning wheel for rats and mice was developed in which a known load canbe controlled and monitored electronically. Five-week-old maleSprague-Dawley rats (10 rats/group) were assigned randomly to either a1) sedentary control group(Control); 2) voluntary exercisedwith no load (Run-No-Load) group; or3) voluntary exercised withadditional load (Run-Load) group for 8 wk. The load for the Run-Loadgroup was progressively increased to reach ~60% of body weightduring the last week of training. The proportions of fast glycolytic(FG), fast oxidative glycolytic (FOG), or slow oxidative (SO) fibers inthe plantaris were similar in all groups. The absolute and relativeplantaris weights were greater in the Run-Load group compared with theControl and Run-No-Load groups. The mean fiber cross-sectional areas of FG, FOG, and SO fibers were 20, 25, and 15% greater in the Run-Load than in Control rats. In addition, these fiber types were 16, 21, and12% larger in Run-Load than in Run-No-Load rats. The muscle weightsand mean cross-sectional areas of each fiber type were highlycorrelated with the average running distances and total work performedin the Run-Load, but not the Run-No-Load, group. The slope of therelationship between fiber size and running distance and total workperformed was significant for each fiber type but was higher for FG andFOG fibers compared with SO fibers. These data show that the load on arat running voluntarily can determine the magnitude of a hypertrophicresponse and the population of motor units that are recruited toperform at a given loading condition.

  相似文献   

6.
We investigated the effects of chronic creatine loading and voluntary running (Run) on muscle fiber types, proteins that regulate intracellular Ca2+, and the metabolic profile in rat plantaris muscle to ascertain the bases for our previous observations that creatine loading results in a higher proportion of myosin heavy chain (MHC) IIb, without corresponding changes in contractile properties. Forty Sprague-Dawley rats were assigned to one of four groups: creatine-fed sedentary, creatine-fed run-trained, control-fed sedentary, and control-fed run-trained animals. Proportion and cross-sectional area increased 10% and 15% in type IIb fibers and the proportion of type IIa fibers decreased 11% in the creatine-fed run-trained compared with the control-fed run-trained group (P < 0.03). No differences were observed in fast Ca2+-ATPase isoform SERCA1 content (P > 0.49). Creatine feeding alone induced a 41% increase (P < 0.03) in slow Ca2+-ATPase (SERCA2) content, which was further elevated by 33% with running (P < 0.02). Run training alone reduced parvalbumin content by 50% (P < 0.05). By comparison, parvalbumin content was dramatically decreased by 75% (P < 0.01) by creatine feeding alone but was not further reduced by run training. These adaptive changes indicate that elevating the capacity for high-energy phosphate shuttling, through creatine loading, alleviates the need for intracellular Ca2+ buffering by parvalbumin and increases the efficiency of Ca2+ uptake by SERCAs. Citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities were elevated by run training (P < 0.003) but not by run training + creatine feeding. This indicates that creatine loading during run training supports a faster muscle phenotype that is adequately supported by the existing glycolytic potential, without changes in the capacity for terminal substrate oxidation.  相似文献   

7.
Twenty 4-week-old Wistar rats exercised voluntarily in running wheels each day for 45 days. Fibre type composition, fibre cross-sectional area and the number of capillaries around a fibre of the slow-twitch soleus and fast-twitch plantaris muscles were examined and compared with animals which had no access to running wheels. The exercise group had a higher percentage of fast-twitch oxidative glycolytic (FOG) fibres and a lower percentage of fast-twitch glycolytic (FG) fibres in the deep portion of the plantaris muscle. The area of FOG fibres in the surface portion of the plantaris muscle was also greater in the exercise group. In the exercised animals, there was a positive relationship between the running distance and the area of FOG fibres in both the deep and surface portions of the plantaris muscle. In addition, the running distance correlated positively with the percentage of FOG fibres and negatively with that of FG fibres in the deep portion of the plantaris muscle. There were no relationships between the running distance and fibre type composition, or fibre area and capillary supply in the soleus muscle. These results suggested that the increase in the percentage and area of FOG fibres in the fast-twitch muscle was closely related to voluntary running.  相似文献   

8.
Skeletal muscle changes after endurance training at high altitude.   总被引:8,自引:0,他引:8  
The effects of endurance training on the skeletal muscle of rats have been studied at sea level and simulated high altitude (4,000 m). Male Wistar rats were randomly assigned to one of four groups: exercise at sea level, exercise at simulated high altitude, sedentary at sea level, and sedentary at high altitude (n = 8 in each group). Training consisted of swimming for 1 h/day in water at 36 degrees C for 14 wk. Training and exposure to a high-altitude environment produced a decrease in body weight (P less than 0.001). There was a significant linear correlation between muscle mass and body weight in the animals of all groups (r = 0.89, P less than 0.001). High-altitude training enhanced the percentage of type IIa fibers in the extensor digitorum longus muscle (EDL, P less than 0.05) and deep portions of the plantaris muscle (dPLA, P less than 0.01). High-altitude training also increased the percentage of type IIab fibers in fast-twitch muscles. These muscles showed marked metabolic adaptations: training increased the activity levels of enzymes involved in the citric acid cycle (citrate synthase, CS) and the beta-oxidation of fatty acids (3 hydroxyacyl CoA dehydrogenase, HAD). This increase occurred mainly at high altitude (36 and 31% for HAD in EDL and PLA muscles; 24 and 31% for CS in EDL and PLA muscles). Training increased the activity of enzymes involved in glucose phosphorylation (hexokinase). High-altitude training decreased lactate dehydrogenase activity. Endurance training performed at high altitude and sea level increased the isozyme 1-to-total lactate dehydrogenase activity ratio to the same extent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Intrinsic skeletal muscle abnormalities decrease muscular endurance in chronic heart failure (CHF). In CHF patients, the number of skeletal muscle Na(+)-K(+) pumps that have a high affinity for ouabain (i.e., the concentration of [(3)H]ouabain binding sites) is reduced, and this reduction is correlated with peak oxygen uptake. The present investigation determined whether the concentration of skeletal muscle [(3)H]ouabain binding sites found during CHF is related to 1) severity of the disease state, 2) muscle fiber type composition, and/or 3) endurance capacity. Four muscles were chosen that represented slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), and mixed fiber types. Measurements were obtained 8-10 wk postsurgery in 23 myocardial infarcted (MI) and 18 sham-operated control (sham) rats. Eighteen rats had moderate left ventricular (LV) dysfunction [LV end-diastolic pressure (LVEDP) < 20 mmHg], and five had severe LV dysfunction (LVEDP > 20 mmHg). Rats with severe LV dysfunction had significant pulmonary congestion and were likely in a chronic state of compensated congestive failure as indicated by an approximately twofold increase in both lung and right ventricle weight. Run time to fatigue and maximal oxygen uptake (VO(2 max)) were significantly reduced ( downward arrow39 and downward arrow28%, respectively) in the rats with severe LV dysfunction and correlated with the magnitude of LV dysfunction as indicated by LVEDP (run time: r = 0.60, n = 21, P < 0.01 and VO(2 max): r = 0.93, n = 13, P < 0.01). In addition, run time to fatigue was significantly correlated with VO(2 max) (r = 0.87, n = 15, P < 0.01). The concentration of [(3)H]ouabain binding sites (B(max)) was significantly reduced (21-28%) in the three muscles comprised primarily of oxidative fibers [soleus: 259 +/- 14 vs. 188 +/- 17; plantaris: 295 +/- 17 vs. 229 +/- 18; red portion of gastrocnemius: 326 +/- 17 vs. 260 +/- 14 pmol/g wet tissue wt]. In addition, B(max) was significantly correlated with VO(2 max) (soleus: r = 0.54, n = 15, P < 0.05; plantaris: r = 0.59, n = 15, P < 0.05; red portion of gastrocnemius: r = 0.65, n = 15, P < 0.01). These results suggest that downregulation of Na(+)-K(+) pumps that possess a high affinity for ouabain in oxidative skeletal muscle may play an important role in the exercise intolerance that attends severe LV dysfunction in CHF.  相似文献   

11.
Exercise intolerance is a cardinal symptom of right ventricular heart failure (RV HF) and skeletal muscle adaptations play a role in this limitation. We determined regional remodeling of muscle structure and mitochondrial function in a rat model of RV HF induced by monocrotaline injection (MCT; 60 mg·kg(-1); n = 11). Serial sections of the plantaris were stained for fiber type, succinate dehydrogenase (SDH) activity and capillaries. Mitochondrial function was assessed in permeabilized fibers using respirometry, and isolated complex activity by blue native gel electrophoresis (BN PAGE). All measurements were compared with saline-injected control animals (CON; n = 12). Overall fiber cross-sectional area was smaller in MCT than CON: 1,843 ± 114 vs. 2,322 ± 120 μm(2) (P = 0.009). Capillary-to-fiber ratio was lower in MCT in the oxidative plantaris region (1.65 ± 0.09 vs. 1.93 ± 0.07; P = 0.03), but not in the glycolytic region. SDH activity (P = 0.048) and maximal respiratory rate (P = 0.012) were each ~15% lower in all fibers in MCT. ADP sensitivity was reduced in both skeletal muscle regions in MCT (P = 0.032), but normalized by rotenone. A 20% lower complex I/IV activity in MCT was confirmed by BN PAGE. MCT-treatment was associated with lower mitochondrial volume density (lower SDH activity), quality (lower complex I activity), and fewer capillaries per fiber area in oxidative skeletal muscle. These features are consistent with structural and functional remodeling of the determinants of oxygen supply potential and utilization that may contribute to exercise intolerance and reduced quality of life in patients with RV HF.  相似文献   

12.
Rat skeletal muscle triacylglycerol utilization during exhaustive swimming   总被引:1,自引:0,他引:1  
The utilization of triacylglycerol in slow oxidative, fast oxidative-glycolytic, and fast glycolytic skeletal muscle fiber types was examined in rats subjected to a prolonged exhaustive swim. Significant reductions of intramuscular triacylglycerol occurred following 2 h and 40 min of swimming in all muscles containing a predominance of slow oxidative and fast oxidative-glycolytic fibers, which possess a high capacity for free fatty acid oxidation. Triacylglycerol content in the soleus decreased by 48%, and reductions of 41, 29, and 27% were measured in the red vastus lateralis, red gastrocnemius, and plantaris muscles, respectively. In the white vastus lateralis and white gastrocnemius muscles (fast glycolytic fibers) triacylglycerol concentrations were unaffected. In all muscles the variability of intramuscular triacylglycerol measurements between animals was 20-50% and the within animal variance (right vs. left hindlimb) was similar. Analytical repeatability was approximately 10% in all muscles and significantly less than the between- and within-animal variances. It was concluded that a real biological variation exists in the triacylglycerol content of all rat skeletal muscles and that intramuscular triacylglycerol is an important energy source during prolonged exercise of moderate intensity.  相似文献   

13.
Hyperthyroidism increases metabolic rate, mitochondrial ATP production, and protein synthesis, but it remains to be determined whether all tissues and synthesis of specific protein pools are equally affected by hyperthyroidism. Previous studies showed that mitochondrial function was less responsive to elevated triiodothyronine (T(3)) levels in the low-oxidative plantaris muscle compared with other tissues in rats. We tested the hypothesis that in T(3)-treated animals mitochondrial protein synthesis would increase in oxidative but not glycolytic tissues. Male rats received either T(3) (200 mug/day, n = 10) or saline (controls, n = 9) by subcutaneous pump for 14 days, and then in vivo protein synthesis rates were measured using [(15)N]phenylalanine in liver, heart, plantaris, and red gastrocnemius (Red Gast). Mitochondrial protein synthesis rate in T(3)-treated rats was higher than in controls by 62% in Red Gast and plantaris and 89 and 115% in liver and heart, respectively (P < 0.01). Cytoplasmic protein synthesis rates in the T(3) group were 107-176% higher than control values (P < 0.01). There was also indirect evidence that protein breakdown was increased in all tissues of the T(3)-treated rats. Phosphorylation of selected regulators of protein synthesis in plantaris and Red Gast (mTOR, p70 S6 kinase, 4E-BP1), however, were not significantly affected by T(3). We conclude that T(3) infusion stimulates a general increase in mitochondrial and cytoplasmic protein synthesis rate among tissues and that this does not appear to explain the tissue-specific responses in mitochondrial oxidative capacity.  相似文献   

14.
In pigs, the optimal utilization of energy substrates within muscle fibers is a prerequisite of the utmost importance for successful adaptation to extra-uterine life. In the present work we demonstrate that fatty acid (FA) oxidative capacities increased within the first five days of life in piglet skeletal muscle. Mitochondrial FA oxidation capacities increased more in the rhomboideus oxidative than in the longissimus lumborum glycolytic muscle (+114% vs. +62%, P < 0.001). The apparent rate of fatty acid degradation by peroxisomes represents 30 to 40% of total FA oxidation capacities and increased by about 170% (P < 0.001) with age in both muscles. The postnatal enhancement of skeletal muscle oxidative capacities was further supported by a rise in acid-soluble and long-chain acylcamitine tissue levels (+67%, P < 0.01), and plasma levels of albumin (+160%, P < 0.001). Cold stress had no effect on mitochondrial and peroxisomal FA oxidation but greatly enhanced (+61%, P < 0.05) the circulating levels of non-esterified fatty acids at five days of life.  相似文献   

15.
16.
Fifteen-week-old rats were subjected to unloading induced by hindlimb suspension for 3 weeks. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and forkhead box-containing protein O1 (FOXO1) mRNA levels and fiber profiles of the soleus and plantaris muscles in rats subjected to unloading (unloaded group) were determined and compared with those of age-matched control rats (control group). The body weight and both the soleus and plantaris muscle weights were lower in the unloaded group than in the control group. The PGC-1α mRNA was downregulated in the soleus, but not in the plantaris muscle of the unloaded group. The FOXO1 mRNA was upregulated in both the soleus and plantaris muscles of the unloaded group. The oxidative enzyme activity was reduced in the soleus, but not in the plantaris muscle of the unloaded group. The percentage of type I fibers was decreased and the percentages of type IIA and IIC fibers were increased in the soleus muscle of the unloaded group, whereas there was no change in fiber type distribution in the plantaris muscle of the unloaded group. Atrophy of all types of fibers was observed in both the soleus and plantaris muscles of the unloaded group. We conclude that decreased oxidative capacity and fiber atrophy in unloaded skeletal muscles are associated with decreased PGC-1α and increased FOXO1 mRNA levels.  相似文献   

17.
An experiment involving 12 primiparous Large White sows was conducted to investigate changes in contractile and metabolic characteristics of skeletal muscle during the first 3 weeks of lactation. The sows lost 19.7 +/- 6.6 kg of body weight. No change in DNA concentration was observed in the longissimus dorsi (LD), a fast-twitch glycolytic muscle, and the trapezius (T), a mainly slow-twitch oxidative muscle during lactation. The percentage of type I fibers increased (P less than 0.05) in LD, but not in T. The muscle fiber cross sectional area (CSA) of IIB fibers, which represents about 78% of the total number of LD fibers, decreased by 18% (P less than 0.01) by lactation; the CSAs of I and IIA fibers were not significantly affected. Marker enzyme activities for oxidative and glycolytic metabolisms decreased in both muscles during lactation. The decrease in oxidative enzyme activities was particularly dramatic in T (P less than 0.001). No significant relationship was observed between sow weight loss and changes in muscle fiber CSA or enzyme activities. The extent to which the results could be related to a negative nutritional balance or to changes in hormonal status is discussed.  相似文献   

18.
The soleus, rectus femoris, and gastrocnemius muscles of young rats trained isometrically for 4 weeks were studied by light and electron microscopy.--The percentage of fast-twitch oxidative muscle fibers decreased at the cost of the fast-twitch glycolytic fibers in the rectus femoris muscle. The percentages of the slow-twitch oxidative fibers did not change significantly in any of the muscles studied. The changes in the areas of the muscle fibers were specific for the muscle and the fiber type and indicate geometrical rearrangements of the fibers in the trained muscles. The Z and M lines were broader in the soleus (containing about 85% slow-twitch oxidative fibers) than in the rectus femoris muscle (containing about 90% fast-twitch glycolytic fibers), while the sarcomere length and the pseudo-H zone were similar. The length of the myosin filaments appeared to be slightly shorter in the fast rectus femoris than in the slow soleus muscle.--The hypothesis on the temporal progress of muscle adaptation to training (Müller, 1974) was substantiated. Correlations between biochemical (Exner et al., 1973a) and histochemical parameters measuring the oxidative capacity were preserved during adaptation to training. The comparison of the histochemical results with the physiological data on similar animals (Exner et al., 1973a) suggests a complex relationship between the contraction time and the percentage of fast-twitch muscle fibers.  相似文献   

19.
Advanced age is associated with altered skeletal muscle hemodynamic control during the transition from rest to exercise. This study investigated the effects of aging on the functional role of nitric oxide (NO) in regulating total, inter-, and intramuscular hindlimb hemodynamic control at rest and during submaximal whole body exercise. We tested the hypothesis that NO synthase inhibition (N(G)-nitro-l-arginine methyl ester, l-NAME; 10 mg/kg) would result in attenuated reductions in vascular conductance (VC) primarily in oxidative muscles in old compared with young rats. Total and regional hindlimb muscle VCs were determined via radiolabeled microspheres at rest and during treadmill running (20 m/min, 5% grade) in nine young (6-8 mo) and seven old (27-29 mo) male Fisher 344 × Brown Norway rats. At rest, l-NAME increased mean arterial pressure (MAP) significantly by ~17% and 21% in young and old rats, respectively. During exercise, l-NAME increased MAP significantly by ~13% and 19% in young and old rats, respectively. Compared with young rats, l-NAME administration in old rats evoked attenuated reductions in 1) total hindlimb VC during exercise (i.e., down by ~23% in old vs. 43% in young rats; P < 0.05), and 2) VC in predominantly oxidative muscles both at rest and during exercise (P < 0.05). Our results indicate that the dependency of highly oxidative muscles on NO-mediated vasodilation is markedly diminished, and therefore mechanisms other than NO-mediated vasodilation control the bulk of the increase in skeletal muscle VC during the transition from rest to exercise in old rats. Reduced NO contribution to vasomotor control with advanced age is associated with blood flow redistribution from highly oxidative to glycolytic muscles during exercise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号