首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Fluorogenic oligopeptide derivatives of the type Lys(ABz)-ONBzl, where ABz iso-aminobenzoyl (anthraniloyl), X stands for Ala Phe, or Ala-Ala, and ONBzlis p-nitrobenzyloxy, were synthesized and shown to be hydrolyzed by leucine aminopeptidase. The hydrolysis is accompanied by an increase in fluorescence due to disruptionof the intramolecular quenching of the fluorescent anthraniloyl moiety by the nitrobenzyester group. The spectral characteristics of the compounds are not consistent withan energy transfer mechanism according to F?rster, therefore the quenching isassumed to be caused by a direct encouter between the quenching and the fluorecentgroups. The change in fluorescence that accompanies the enzymic hydrolysis ofthe first peptide bound was used for quantitative measurement of the activity ofthe activity of leucine aminopeptidase and for the determination of some of itskinetic parameters. A bacterial aminopeptidase from Clostrdium histolyticumthat is very similar to leucine aminopeptidase in its substrate specificity inits substrate specificity did not hydrolyze the above peptidederivatives. Thehydrolysis of leucine p-nitroanilide by this enzyme was found to be inhibitedby the three peptides and the corresponding inhibition constants were determined.  相似文献   

2.
The design and application of a recently developed type of fluorogenic substrates for proteolytic enzymes is reviewed. The substrates consist of peptide chains constructed to match the specificity of the particular enzyme and to bear a suitable chromophore at each side of the cleavable bond. One of the chromophores is a fluorescent group and the other is a quencher that causes a great reduction of fluorescence intensity of the fluorophore, either by direct intramolecular encounter or by radiationless resonance energy transfer. Enzymic cleavage of the molecule is followed by release of fluorescence as the result of cancelling the quenching interaction between the chromophores. The properties of such substrates and their possible future applications are discussed.  相似文献   

3.
By simple substitution of an N-acyl group for the anthraniloyl(o-aminobenzoyl) group, chromogenic p-nitroanilide substrates are converted into highly sensitive fluorogenic substrates of proteases. The fluorescence of the anthraniloyl group is completely quenched by the p-nitroanilide moiety in the intact substrates and is released during their enzymatic hydrolysis. The approach is exemplified by the synthesis of anthraniloyl-Phe p-nitroanilide, anthraniloyl-Lys p-nitroanilide, and anthraniloyl-Gly-Gly-Phe p-nitroanilide as substrates for chymotrypsin, trypsin, and alkaline mesentericopeptidase, respectively. The kinetic parameters of these substrates are slightly better than those of similar derivatives bearing other acyl groups, suggesting that the enhanced sensitivity is completely due to the method of measurement. Since the conversion does not affect the chromogenic properties of the substrates, the same compounds can be used as usual p-nitroanilide substrates as well.  相似文献   

4.
Inductively coupled plasma–mass spectrometry (ICP–MS)-based assays lend themselves to multiplexing due to the high resolution between mass channels, the sensitivity, and the reliability of the technique. Here the potential of ICP–MS-based protease assays is demonstrated with a quadruplex assay of cysteine proteases and metalloproteases. Four orthogonal peptide substrates were synthesized for the proteases calpain-1, caspase-3, matrix metalloprotease-9 (MMP-9), and a disintegrin and metalloprotease-10 (ADAM10). Each substrate carries a biotin tag at the C terminus and a diethylenetriaminepentaacetic acid (DTPA)-based lanthanide complex at the N terminus. The results demonstrate that this is a simple and reproducible analysis technique with excellent correlation between the single and multiplex assay formats.  相似文献   

5.
A method of screening of proteolytic enzyme's substrates is proposed. An equimolar mixture of substrates consisting of peptide and easily detectable chromophore moieties (all chromophores in the mixture must be different) is subjected to enzymatic treatment. The cleaved chromophore groups, which are products of the substrate proteolysis, are quantitatively determined by chromatography. The Kcat/Km ratio is greater for substrates with higher initial rate accumulation of proteolysis products. The method is illustrated by screening of peptide derivatives of aminonaphtalene sulphonamides for trypsin assay. Proteolysis products are determined by HPLC with absorption detection or by TLC with fluorescence detection.  相似文献   

6.
New hydrosoluble fluorogenic substrates for plasmin gluconoylpeptidyl-3-amido-9-ethylcarbazole were synthesized. The substitution of the N-terminal end of the peptides by a gluconoyl group prevents the substrates from aminopeptidase degradation and highly increases their hydrosolubility. The substitution of the peptide C-terminal end by a 3-amino-9-ethylcarbazole group leads to substrates suitable for direct fluorometric assay of plasmin present in cell supernatants or in cell lysates. On the basis of the kinetic parameters of the substrate hydrolysis by plasmin, it was found that D amino acids in the P2 position decrease systematically the kinetic constants of the substrates. The L configuration of the P2 amino acid appears therefore as essential in optimum substrates for plasmin.  相似文献   

7.
The synthesis of fluorescent derivatives of nucleosides and nucleotides, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding their 3'-O-anthraniloyl derivatives, is here described. The N-methylanthraniloyl derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.12-0.24. Their fluorescence was sensitive to the polarity of the solvent; in N,N-dimethylformamide the quantum yields were 0.83-0.93. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield in water. All anthraniloyl derivatives, as well as the N-methylanthraniloyl ones, had virtually identical fluorescent properties, regardless of their base structures. The ATP derivatives showed considerable substrate activity as a replacement of ATP with adenylate kinase, guanylate kinase, glutamine synthetase, myosin ATPase and sodium-potassium transport ATPase. The ADP derivatives were good substrates for creatine kinase and glutamine synthetase (gamma-glutamyl transfer activity). The GMP and adenosine derivatives were substrates for guanylate kinase and adenosine deaminase, respectively. All derivatives had only slightly altered Km values for these enzymes. While more fluorescent in water, the N-methylanthraniloyl derivatives were found to show relatively low substrate activities against some of these enzymes. The results indicate that these ribose-modified nucleosides and nucleotides can be versatile fluorescent substrate analogs for various enzymes.  相似文献   

8.
The use of fluorogenic substrates with intramolecular fluorescence quenching as substrates for chymosin was studied. It was shown that chymosin hydrolyzes the Phe-Phe peptide bond. The effect of pH on the hydrolysis of substrates by chymosin was investigated. The catalytic characteristics of the hydrolysis of the fluorogenic substrates were obtained at the pH optima. The influence of dimethylformamide on chymosin activity was studied.  相似文献   

9.
A new substrate for subtilisins, anthraniloyl-Ala-Ala-Phe-4-nitroanilide, has been synthesized and characterized. The peptide is a fluorogenic substrate that is intramolecularly quenched without loss of its chromogenic properties and offers a possibility for double-assay kinetic analysis. The kinetic parameters determined for subtilisin Carlsberg are Km = 0.004 mM, kcat = 104 s-1, and those for subtilisin BPN' are Km = 0.020 mM, kcat = 49 s-1. The substrate is extremely sensitive for subtilisins; the specificity constants are 10-fold higher than the corresponding values for the widely used substrate, succinyl-Ala-Ala-Pro-Phe-4-nitroanilide, and 200- to 1000-fold higher than the values obtained with succinyl-Ala-Ala-Phe-4-nitroanilide. The favorable effect of the anthraniloyl group as a P4 residue in the substrate sequence Ala-Ala-Phe-4-nitroanilide was assumed to be due to an ability to stiffen S4-P4 interactions. The mechanism proposed is hydrogen bond formation between the phenol group of tyrosine-104 and the amino group of the anthraniloyl moiety. In the spectrophotometric assay with the new substrate, the lower detection limit for subtilisin Carlsberg was 1 nM.  相似文献   

10.
The hydrolysis of the chromogenic peptide Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu at the Phe-Phe(4-NO2) bond by nine aspartic proteinases of animal origin and seven enzymes from micro-organisms is described [Phe(4-NO2) is p-nitro-L-phenylalanine]. A further series of six peptides was synthesized in which the residue in the P3 position was systematically varied from hydrophobic to hydrophilic. The Phe-Phe(4-NO2) bond was established as the only peptide bond cleaved, and kinetic constants were obtained for the hydrolysis of these peptide substrates by a representative selection of aspartic proteinases of animal and microbial origin. The value of these water-soluble substrates for structure-function investigations is discussed.  相似文献   

11.
Angiotensin-converting enzyme 2 (ACE2 or ACEH) is a novel angiotensin-converting enzyme-related carboxypeptidase that cleaves a single amino acid from angiotensin I, des-Arg bradykinin, and many other bioactive peptides. Using des-Arg bradykinin as a template, we designed a series of intramolecularly quenched fluorogenic peptide substrates for ACE2. The general structure of the substrates was F-X-Q, in which F was the fluorescent group, Abz, Q was the quenching group (either Phe(NO(2)) or Tyr(NO(2))), and X was the intervening peptide. These substrates were selectively cleaved by recombinant human ACE2, as shown by MS and HPLC. Quenching efficiency increased as the peptide sequence was shortened from 8 to 3 aa, and also when Tyr(NO(2)) was used as a quenching group instead of Phe(NO(2)). Two of the optimized substrates, TBC5180 and TBC5182, produced a signal:noise ratio of better than 20 when hydrolyzed by ACE2. Kinetic measurements with ACE2 were as follows: TBC5180, K(m)=58 microM and k(cat)/K(m)=1.3x10(5)M(-1)s(-1); TBC5182, K(m)=23 microM and k(cat)/K(m)=3.5 x 10(4)M(-1)s(-1). Thus, based on hydrolysis rate, TBC5180 was a better substrate than TBC5182. However, TBC5180 was also hydrolyzed by ACE, whereas TBC5182 was not cleaved, suggesting that TBC5182 was a selective for ACE2. We conclude that these two peptides can be used as fluorescent substrates for high-throughput screening for selective inhibitors of ACE2 enzyme.  相似文献   

12.
Artificial substrates for prenyltransferase   总被引:2,自引:1,他引:1       下载免费PDF全文
Four out of 16 new allylic pyrophosphates synthesized were found to be artificial substrates for liver prenyltransferase (EC 2.5.1.1). These were the trans-and the cis-3-ethyl-3-methylallyl, the 3,3-diethylallyl and the (mixture of cis and trans) 3-methyl-3-n-propylallyl pyrophosphates. The products synthesized from these substrates and isopentenyl pyrophosphate were the appropriate homo- and bishomo-farnesyl pyrophosphates. Substitution of 3,3-dimethylallyl pyrophosphate at C-2 with a methyl group destroyed its reactivity with the enzyme. Neither the unsubstituted allyl pyrophosphate nor the cis- or trans-3-methylallyl pyrophosphate could be condensed with isopentenyl pyrophosphate. Thus the simplest allylic substrate for prenyltransferase is 3,3-dimethylallyl pyrophosphate.  相似文献   

13.
p-Nitroanilides of amino acids and peptides were used to study the specificity of cathepsins H and B from human and bovine brain, respectively. The specific activity of cathepsin H decreased in the following order: Arg-pNa greater than or equal to Leu-pNa greater than Ala-pNa greater than or equal to Phe-pNa greater than Pro-pNa greater than Glu-pNa; Arg-pNa was split by the enzyme 12 times as fast as Bz-Arg-pNa. Among other oligopeptide p-nitroanilides tested (Ala-Ala, Ala-Leu, Ala-Ala-Ala, Ala-Ala-Leu, Gly-Gly-Leu, Gly-Gly-Phe, Gly-Leu-Phe, pGlu-Phe-Leu, pGlu-Phe-Ala, pGlu-Phe), PGlu-Phe-Leu and pGlu-Phe-Ala appeared to be the best substrates for cathepsin B; Km for hydrolysis were 0.1 mM and 0.165 mM, respectively, kcat were 5.1 and 8.3 s-1, respectively. A comparative study of substrate specificity of cathepsin D and high molecular weight aspartic peptidase with the use of fluorescent substrate with inner fluorescence quenching, Abz-Ala-Ala-Phe-Phe-pNa, revealed that both peptidases hydrolyzed the single bond between two phenylalanine residues, resulting in the increase of fluorescence (4.5-5-fold) of anthraniloyl tripeptide. The Km values for the substrate hydrolysis by cathepsin D and high molecular weight aspartic peptidase were 6.2 microM and 11.2 microM; kcat were 7.2 s-1 and 1.3 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Mitochondrial processing peptidase (MPP), a metalloendopeptidase consisting of alpha- and beta-subunits, specifically cleaves off the N-terminal presequence of the mitochondrial protein precursor. Structural information of the substrate bound to MPP was obtained using fluorescence resonance energy transfer (FRET) measurement. A series of the peptide substrates, which have distal arginine residues required for effective cleavage at positions -7, -10, -14, and -17 from the cleavage site, were synthesized and covalently labeled with 7-diethyl aminocoumarin-3-carboxylic acid at the N termini and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) at position +4, as fluorescent donor and acceptor, respectively. When the peptides were bound to MPP, substantially the same distances were obtained between the two probes, irrespective of the length of the intervening sequence between the two probes. When 7-diethylamino-3-(4'-maleimidyl phenyl)-4-methyl coumarin was introduced into a single cysteine residue in beta-MPP as a donor and IANBD was coupled either at the N terminus or the +4 position of the peptide substrate as an acceptor, intermolecular FRET measurements also demonstrated that distances of the donor-acceptor pair were essentially the same among the peptides with different lengths of intervening sequences. The results indicate that the N-terminal portion and the portion around the cleavage site of the presequence interact with specific sites in the MPP molecule, irrespective of the length of the intervening sequence between the two portions, suggesting the structure of the intervening sequence is flexible when bound to the MPP.  相似文献   

15.
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.  相似文献   

16.
Nine model intramolecularly quenched fluorogenic substrates (IQFS) of the general structure F-Phe-NH-Np, containing coumarin or quinolinone derivatives as fluorophores (F) and the p-nitroanilide group (Np) as quencher, were synthesized. The study of the fluorescence properties of the substrates synthesized and the corresponding fluorophores showed that efficient quenching of fluorescence (>89%) was observed in all cases. The combination of 7-glutarylamido-4-methyl-coumarin (Mec-NH-Glt-OH) or 7-methoxy-4-coumaryl-acetic acid (Mca) with the p-nitroanilide group gave the best results (97.2 and 98.8% quenching, respectively). These fluorophores can be used to convert peptide p-nitroanilides into IQFS, which, retaining their chromogenic properties, may be applied in both fluorometric and colorimetric assays.  相似文献   

17.
The octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu, corresponding to the 14-21 sequence of bovine beta-casein A2 and 11 shorter and/or modified derivatives were synthesized and used as model substrates for three casein kinases: rat liver casein kinases 2 and 1 and a casein kinase isolated from the golgi-enriched fraction of lactating mammary gland (GEF-casein kinase). Casein kinase-2 readily phosphorylates the octapeptide at its Ser-4 residue with a Vmax value comparable to those obtained with protein substrates and Km values of 85 microM and 11 microM in the absence and presence of polylysine, respectively. These are the most favourable kinetic parameters reported so far with peptide substrates of casein kinase-2. Stepwise shortening of the octapeptide from its N terminus promotes both a gradual decrease of Vmax and an increase of Km, this being especially dramatic in passing from the hexapeptide Leu-Ser-Ser-Ser-Glu-Glu (Km 210 microM) to the pentapeptide Ser-Ser-Ser-Glu-Glu (Km 2630 microM). The tetrapeptide Ser-Ser-Glu-Glu is the shortest derivative still phosphorylated by casein kinase-2, albeit very slowly, and the tripeptides Ser-Glu-Glu and Glu-Leu-Ser were not substrates at all. Furthermore, the pentapeptide Ser-Ser-Ser-Glu-Glu was found to be a better substrate than Ser-Ser-Ala-Glu-Glu, Ser-Ala-Ser-Glu-Glu and Ser-Ala-Ala-Glu-Glu by virtue of its lower Km value. These data, while confirming that the motif Ser-Xaa-Xaa-Glu is specifically recognized by casein kinase-2, strongly suggest that additional local structural features can improve the phosphorylation efficiency of serine-containing peptides which are devoid of the large acidic clusters recurrent in many phosphorylation sites of casein kinase 2. In particular, predictive structural analysis as well as NMR and C18 reverse-phase HPLC elution profile data support the hypothesis that a beta-turn conformation is responsible for the remarkable suitability of the octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu and some of its shorter derivatives to phosphorylation mediated by casein kinase-2. While neither the peptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu nor any of its derivatives were affected by casein kinase-1, a rapid phosphorylation of the octapeptide by GEF-casein kinase at Ser-5 (not Ser-4) was obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Protein disulphide isomerase is an enzyme that catalyses disulphide redox reactions in proteins. In this paper, fluorogenic and interchain disulphide bond containing peptide libraries and suitable substrates, useful in the study of protein disulphide isomerase, are described. In order to establish the chemistry required for the generation of a split-synthesis library, two substrates containing an interchain disulphide bond, a fluoroescent probe and a quencher were synthesized. The library consists of a Cys residue flanked by randomized amino acid residues at both sides and the fluoroescent Abz group at the amino terminal. All the 20 natural amino acids except Cys were employed. The library was linked to PEGA‒beads via methionine so that the peptides could be selectively removed from the resin by cleavage with CNBr. A disulphide bridge was formed between the bead‒linked library and a peptide containing the quenching chromophore (Tyr(NO2)) and Cys(pNpys) activated for reaction with a second thiol. The formation and cleavage of the interchain disulphide bonds in the library were monitored under a fluoroescence microscope. Substrates to investigate the properties of protein disulphide isomerase in solution were also synthesized. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A new series of thio ester, depsipeptide, and peptide substrates have been synthesized for the bacterial enzyme Clostridium histolyticum collagenase. The hydrolysis of the depsipeptide substrate was followed on a pH stat, and thio ester hydrolysis was measured by inclusion of the chromogenic thiol reagent 4,4'-dithiopyridine in the assay mixture. The best thio ester substrate, Boc-Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba, had a kcat/KM of 63 000 M-1 s-1, while several shorter thio ester sequences were inactive as substrates. In general, the peptide analogues of all the reactive thio ester substrates were shown to be hydrolyzed 5-10 times faster by collagenase. In one case (Z-Gly-Pro-Leu-Gly-Pro-NH2) where a comparison was made, the peptide substrate was respectively 8- and 106-fold more readily hydrolyzed than the corresponding thio ester and ester substrates. Cleavages of the two fluorescence-quench substrates Abz-Gly-Pro-Leu-Gly-Pro-Nba and Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba could be easily followed fluorogenically since a 5-10-fold increase in fluorescence occurred upon hydrolysis. The fluorescent peptide substrate is the best synthetic substrate known for C. histolyticum collagenase with a kcat/KM value of 490 000 M-1 s-1. A series of new reversible inhibitors were developed by the attachment of zinc ligating groups (hydroxamic acid, carboxymethyl, and thiol) to various peptide sequences specific for C. histolyticum collagenase. The shorter peptides designed to bind to either the P3-P1 or P1'-P3' subsites were poor to moderate inhibitors. The thiol HSCH2CH2CO-Pro-Nba had the lowest K1 (0.02 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
S Butenas  T Orfeo  J H Lawson  K G Mann 《Biochemistry》1992,31(23):5399-5411
A series of new compounds, 6-amino-1-naphthalenesulfonamides (ANSN), were used as fluorescent detecting groups for substrates of amidases. These compounds have a high quantum fluorescent yield, and the sulfonyl moiety permits a large range of chemical modification. Fifteen ANSN substrates with the structure (N alpha-Z)Arg-ANSNR1R2 were synthesized and evaluated for their reactivity with 8 proteases involved in blood coagulation and fibrinolysis. Thrombin, activated protein C, and urokinase rapidly hydrolyzed substrates with monosubstituted sulfonamide moieties (R1 = H). The maximum rate of substrate homologue). The hydrolysis rates for substrates with branched substituents were slower than their linear analogues. Monosubstituted (N alpha-Z)Arg-ANSNR1R2 possessing cyclohexyl or benzyl groups in the sulfonamide moiety were hydrolyzed by these three enzymes at rates similar to that of the n-butyl homologue (except the cyclohexyl compound for u-PA). Factor Xa rapidly hydrolyzed substrates with short alkyl chains, especially when R1 = R2 = CH3 or C2H5. Lys-plasmin and rt-PA demonstrated low activity with these compounds, and the best results were accomplished for monosubstituted compounds when R2 = benzyl (for both enzymes). Factor VIIa and factor IXa beta exhibited no activity with these substrates. A series of 14 peptidyl ANSN substrates were synthesized, and their reactivity for the same 8 enzymes was evaluated. Thrombin, factor Xa, APC, and Lys-plasmin hydrolyzed all of the substrates investigated. Urokinase, rt-PA, and factor IXa beta exhibited reactivity with a more limited group of substrates, and factor VIIa hydrolyzed only one compound (MesD-LGR-ANSN(C2H5)2). The substrate ZGGRR-ANSNH (cyclo-C6H11) showed considerable specificity for APC in comparison with other enzymes (kcat/KM = 19,300 M-1 s-1 for APC, 1560 for factor IIa, and 180 for factor Xa). This kinetic advantage in substrate hydrolysis was utilized to evaluate the activation of protein C by thrombin in a continuous assay format. Substrate (D-LPR-ANSNHC3H7) was used to evaluate factor IX activation by the factor VIIa/tissue factor enzymatic complex in a discontinuous assay. A comparison between the commercially available substrate chromozyme TH (p-nitroanilide) and the ANSN substrate with the same peptide sequence (TosGPR) demonstrated that aminonaphthalenesulfonamide increased the specificity (kcat/KM) of substrate hydrolysis by thrombin more than 30 times, with respect to factor Xa substrate hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号