首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The process involved in the disappearance of PMSG from the blood of sheep, following a single intravenous injection, has been separated into two exponential components. Values (mean plus or minus S.E.) calculated from experiments on five animals were: metabolic clearance rate (37.8 plus or minus 1.6 ml hr-minus 1); rate constant of disposal (0.0315 plus or minus 0.0016 hr-minus 1); half-time of disposal (21.2 plus or minus 1.1 hr). The stage of the oestrous cycle, ovariectomy and the dose of PMSG used had no apparent effect on these values.  相似文献   

2.
Recently, evidence has accumulated suggesting that significant amounts of plasma low density lipoproteins (LDL) may be derived by direct production. These plasma very low density lipoprotein (VLDL)-independent sources include the production and secretion of LDL-like particles directly by the liver, and/or a small pool of nascent precursor particles that are converted rapidly to LDL. The current studies were designed to test the hypothesis that hepatic VLDL represent a rapidly turning over precursor pool to plasma LDL in African green monkeys. Livers from African green monkeys were perfused with serum-free medium containing [3H]leucine or 3H-labeled amino acids for 4-6 hr. Hepatic [3H]VLDL and autologous plasma 125I-labeled LDL were injected simultaneously into recipient animals and density gradient ultracentrifugation and gel filtration were used to characterize the distribution of 3H and 125I radioactivity at selected times after injection. These studies show that 4 to 66% of the injected dose of hepatic VLDL [3H]apoB-100 was metabolized extremely rapidly into particles that resembled the recipient's plasma LDL by size and density. Based on the kinetic model developed to describe the metabolic behavior of hepatic VLDL [3H]apoB-100, the estimated maximal pool size of hepatic VLDL apoB-100 in these animals was very small (0.042 and 0.112 mg) and represented, at best, approximately 10% of the average plasma VLDL apoB-100 mass found in cholesterol-fed African green monkeys. In addition, the radiolabeled hepatic LDL appear to be metabolized similarly to plasma LDL. That is, the rapid conversion of hepatic VLDL as well as the direct production of hepatic particles within the LDL density range appear to contribute to plasma LDL. Metabolic heterogeneity was also seen within the LDL class. The more buoyant subfraction (LDL1) had a higher turnover rate than the more dense subfraction (LDL2) and hepatic VLDL-derived [3H]LDL1 had a slower final rate of plasma disappearance than the plasma-derived 125I-labeled LDL1 in most animals. The results from these studies suggest that a small pool of hepatic VLDL can be converted very rapidly to plasma LDL and may contribute significantly to the large plasma pool of LDL seen in cholesterol-fed African green monkeys. This pathway may be analogous to the pathway in some human subjects in which a portion of human plasma VLDL is converted rapidly into LDL without passing through a delipidation cascade, often referred to as direct LDL production.  相似文献   

3.
Rabbits fed a wheat starch-casein diet develop a marked hypercholesterolemia with a lipoprotein distribution similar to that of humans. Approximately 76% of the total cholesterol is carried in the low density lipoprotein (LDL) fraction (1.006 less than d less than 1.063 g/ml). Inclusion of 1% cholestyramine in the diet prevents the increase in plasma cholesterol. The cholestyramine effect is mediated through an increased fractional catabolic rate of 125I-LDL. In order to determine the potential role of hepatic LDL receptors in the removal of LDL from the plasma, binding of 125I-LDL and 125I-beta-VLDL (beta-migrating very low density lipoproteins) to hepatic membranes prepared from livers of rabbits fed the wheat starch-casein diet with or without cholestyramine supplementation was investigated. Membranes from livers of the cholestyramine-supplemented animals exhibit high levels of specific EDTA-sensitive binding of either of the 125I-labeled lipoproteins. Very little EDTA-sensitive binding occurs on liver membranes from wheat starch-casein-fed rabbits that have not been treated with cholestyramine. These results indicate that the hypercholesterolemia in rabbits associated with the wheat starch-casein diet is wholly or partially the result of a decreased number of specific hepatic LDL receptors and thus a decreased catabolism of plasma cholesterol. The response of the liver to the inclusion in the diet of the bile acid sequestrant, cholestyramine, is to maintain or increase the number of specific LDL binding sites, thus promoting catabolism of plasma cholesterol.  相似文献   

4.
The turnover of prothrombin and of factor X was investigated in rabbits fed on a 1%-cholesterol-supplemented or a standard diet by studying the evolution of radioactivity in blood and in plasma from these animals after the intravenous injection of either 125I-rabbit factor X or 125I-bovine prothrombin. For factor X, half-lives and fractional pool sizes were similar for the two groups of rabbits in the extravascular, intravascular and plasma compartments. However, the equivalent plasma fractional pool size for the two groups of rabbits was only 73% of that in the intravascular compartment. The fractional catabolic rate for the hypercholesterolaemic rabbits [0.064 +/- 0.007 (of the intravascular pool)/h] was not significantly different from that in the rabbits fed on the standard diet (0.074 +/- 0.008/h). However, the absolute catabolic rate, and therefore the rate of synthesis, was significantly higher (1.261 +/- 0.141 mg/day per kg body wt. of rabbit) in the rabbits fed on the cholesterol-supplemented than that in the rabbits fed on the standard diet (0.705 +/- 0.019 mg/day per kg). The prothrombin half-lives and fractional pool sizes were similar for the two groups of rabbits in the extravascular and the intravascular compartments. The fractional catabolic rate for the hypercholesterolaemic rabbits [0.041 +/- 0.003 (of the plasma pool)/h] was not significantly different from that in the rabbits fed on the standard diet (0.035 +/- 0.003/h). However, the absolute catabolic rate and therefore the rate of prothrombin synthesis was significantly higher (3.96 +/- 0.48 mg/day per kg body wt.) in the rabbits fed on the cholesterol-supplemented than that in the rabbits fed on the standard diet (2.24 +/- 0.12 mg/day per kg).  相似文献   

5.
Turnover of 125I-low density lipoprotein (LDL) and of 131I-high density lipoprotein (HDL) was determined before and after end-to-side portacaval shunt in eight swine. LDL (d 1.019-1.063) and HDL (d.1.09-1.21) were isolated by ultracentrifugation and iodinated by the iodine monochloride technique. Immediately postoperatively there was no consistent change in the fractional catabolic rate (FCR) of LDL compared to preoperative control values, while in all animals FCR of HDL was significantly increased (by as much as 300%). After recovery from surgery, neither LDL nor HDL catabolic rates were significantly elevated above control values in four swine. However, plasma levels of LDL and HDL protein, and of LDL and HDL cholesterol were significantly reduced 10-12 weeks after the portacaval shunt. The reduced levels of LDL and HDL associated with normal fractional clearance rates imply a reduction in synthesis of LDL and HDL following portal diversion.  相似文献   

6.
Relying on methods other than the determination of turnover rate of triglyceride from the curve of plasma triglyceride radioactivity after administration of labeled precursor, we have confirmed that the endogenous hypertriglyceridemia induced by estrogenization of the chick is accompanied by increased production of triglyceride. Chicks estrogenized with diethylstilbestrol became grossly hypertriglyceridemic and had elevated levels of plasma free fatty acid. Within 5 min of administration of labeled palmitate, estrogenized hypertriglyceridemic birds converted approximately 10 times more plasma free fatty acid to hepatic triglyceride than did controls. In addition, 2 hr after intraperitoneal injection of [14-C]acetate or [U-14-C]glucose, the specific activity of very low density lipoprotein triglyceride (VLDL-TG) of estrogenized birds reached or exceeded that of the untreated controls, and the rapid enrichment of the vastly expanded plasma VLDL-TG pool with labeled triglyceride further indicated that increased production of triglyceride occurs with estrogenization. Furthermore, [14-C]acetate incorporation into VLDL-TG was calculated to be 1.6 and 6.6% of the injected dose in estrogenized birds compared with 0.1 and 0.2% in untreated birds. Increased production of plasma VLDL-TG was confirmed by a kinetic study of VLDL-TG metabolism, employing reinjected, endogenously prepared [14-C]triglyceride-labeled VLDL. The fractional turnover rate of VLDL-TG in estrogenized hypertriglyceridemic birds was substantially less than that in untreated controls (0.32 plus or minus 0.03 vs 0.71 plus or minus 0.03/hr), but the total turnover rate was nearly 50 times greater (244 plus or minus 52 vs. 5 plus or minus 1 mg/hr).  相似文献   

7.
The suitability of utilizing 125-I-iothalamate to estimate the volume of extracellular fluid was assessed in ureterally ligated chickens. Subsequent to intravenous administration the movement of labeled iothalamate from the plasma compartment follows closed two-compartment kinetics and equilibration between vascular and extravascular phases is attained in about 20 minutes. The volume of distribution of 125-I-iothalamate prior to and following the influsion of 0.15 M NaCl (equal to 15% of the estimated ECFV) averaged 23.6 plus or minus 0.61 and 28.4 plus or minus 0.22% of the body weight, respectively. The observed postsaline labeled iothalamate space did not differ statistically from the expected value. When administered simultaneously inulin penetrates into an apparent volume that is 75% of the labeled iothalamate space after 60 minutes. The content of 125-I-iothalamate is relatively high in liver and kidney tissue and suggests that these are major sites where removal of the indicator from plasma occur. It is suggested that 125-I-iothalamate, under appropriate conditions, could be used to measure the plasma volume and the extravascular fluid with which plasma is in rapid diffusion equilibrium.  相似文献   

8.
Rats treated with the contraceptive steroid d-norgestrel have lower plasma very low density lipoprotein (VLDL)-triglycerides and higher low density lipoprotein (LDL)-cholesterol than controls. To explain these results, the kinetics of VLDL and LDL turnover were studied by injecting 125I-labeled rat-VLDL and 131I-labeled rat-LDL simultaneously into rats treated with a small dose of d-norgestrel (4 micrograms per day per kg body weight0.75 for 18 days, n = 22) and their untreated controls (n = 22). VLDL- and LDL-apoB specific activity-time curves obtained over 50 hr best conformed to a three-pool model. VLDL-apoB clearance expressed as irreversible catabolic rate (k01) was markedly enhanced in the treated versus control rats (0.57 vs. 0.34 pools hr-1), leading to a marked reduction in VLDL-apoB pool size (270 vs. 420 micrograms). However, VLDL-apoB production rates were similar in the two groups (160 vs. 140 micrograms/hr, respectively). The 125I-labeled apoB specific activity-time curve derived from the catabolism of 125I-labeled VLDL-apoB also showed enhanced clearance in d-norgestrel-treated rats. 125I-Labeled IDL-apoB and 125I-labeled LDL-apoB specific activity-time curves failed to intersect the VLDL-apoB curve at maximal heights, suggesting input of intermediate density lipoprotein (IDL) and LDL independent of VLDL catabolism in both groups. However, the extent of independent LDL-apoB production was similar in both groups. Clearance of 131I-labeled LDL-apoB following injection of 131I-labeled rat-LDL was delayed in the d-norgestrel-treated versus control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

10.
The metabolism of heterogeneous subpopulations of low density lipoprotein (LDL) apoB100 was examined in three normolipidemic and two familial combined hyperlipidemic subjects. Autologous radioiodinated plasma LDL (1.019 less than d less than 1.063 g/ml) were injected into each subject and the disappearance and appearance of radiolabeled lipoproteins into various LDL subpopulations were examined using density gradient ultracentrifugation. Eleven to 13 fractions (-320 microliter each) were collected within LDL defined uniquely in each subject. In all subjects, the disappearance of radiolabeled LDL from plasma was biexponential. However, changes with time in the distribution of radiolabeled LDL among the various LDL density subpopulations revealed complex metabolic behavior that differed among the subjects. When the relationships between density and kinetic characteristics were examined in more detail by following the disappearance of individual fractions defining LDL in each subject, the data suggested that: 1) the kinetic behavior of the LDL fractions was more complex than suggested by the disappearance of radiolabeled LDL from plasma: 2) certain fractions within specific density ranges were kinetically similar; 3) distinct differences in the disappearance curves among the fractions occurred within narrow density ranges; and 4) precursor-product relationships were seen among specific LDL density fractions and varied from subject to subject. These studies underscore the complexities of plasma LDL apoB-100 metabolism. More detailed characterizations of the kinetic behavior of various LDL subpopulations should help in our understanding of the origin(s) and potential physiological consequences of different LDL subpopulations.  相似文献   

11.
The plasma distribution and cellular uptake of [3H]vitamin D3 was studied in vitro using cultured human fibroblasts. Incubation of [3H]vitamin D3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [3H]1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [3H]vitamin D3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D3 was time, concentration, and temperature dependent. At a concentration of 50 micrograms LDL/ml of medium, the uptake of [3H]vitamin D3 from LDL at 37 degrees C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver.  相似文献   

12.
The catabolism of intravenously injected 125I-labelled low density lipoproteins (LDL) was followed in normal miniature swine for 2 weeks. When compared with the two-exponential model, the decay curve of the plasma radioactivity associated with the LDL fraction was best described by a three-exponential model. In this system, the half-lives were 4.5 +/- 3.7, 19.7 +/- 6.6, and 127 +/- 70 h (mean of four studies). Assuming a kinetic model with metabolism of LDL in the rapidly equilibrating compartment and two slower equilibrating compartments (a model requiring three exponentials), the mean fractional catabolic rate for apo-LDL was calculated to be 0.015 h-1. Therefore, if at steady state, the synthetic rate for apo-LDL in the same pigs would be 5.6 +/- 4.1 mg/h. Different kinetic models using two or three exponentials would provide different values for the synthetic rate of apo-LDL. However, in view of the known existence of at least three major equilibrating pools for LDL in plasma, liver, and lymph, and in view of the present results, the kinetic model for LDL metabolism should be better represented by a three-exponential system.  相似文献   

13.
Preliminary studies were performed to establish whether there was kinetic heterogeneity in the metabolism of subclasses of low-density lipoproteins (LDL) in the cynomolgus monkey. Previous studies of the effects of inhibition of hepatic triglyceride lipase in this species had shown an increase in the mass of lighter LDL (Sf greater than 9) and a decrease in the mass of denser LDL. LDL (1.019 less than d less than 1.063) were subdivided into two subfractions LDL1 (1.019 less than d less than 1.035) and LDL2 (1.035 less than d less than 1.063) by ultracentrifugation. The lipoproteins in these two fractions could be shown to have different flotation by analytic and isopycnic ultracentrifugation. When tracer amounts of homologous 125I-labeled very-low-density lipoproteins (VLDL) were injected into chow-fed cynomolgus monkeys, apoB radioactivity appeared in LDL1 prior to its appearance in LDL2. [125I]LDL1 injected into the monkey was removed from the LDL1 density subclass with a half-life of 5.5-10.3 h. Much of the radioactivity injected as LDL1 was converted to denser LDL (LDL2). Labeled LDL2 injected into the monkey was not converted to LDL1. Thus, at least two kinetically distinct subpopulations of LDL circulate in the plasma of this species. The lighter LDL is to a large extent a metabolic precursor of the more dense LDL (LDL2).  相似文献   

14.
Isolated rat livers were perfused for 4 hours in a recirculating system containing washed rat erythrocytes. Biologically screened, radioiodinated low density lipoproteins (1.030 < d < 1.055 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat low density lipoproteins. Apolipoprotein B contained 90% of the bound (131)I, other apolipoproteins contained 4%, and lipids contained the remainder. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The fractional catabolic rate ranged from 0.3 to 1.7%/hr in seven experiments and was inversely related to the size of perfusate pool of low density apolipoprotein. The catabolic rate of low density apolipoprotein (fractional catabolic rate x pool size) in four livers, in which the concentration of rat low density lipoproteins was 50-100% of that present in intact rats, was 5.3 +/- 2.7 micro g hr(-1) (mean +/- SD). Similar results were obtained with human low density lipoproteins. These rates were compared with catabolic rates for the apoprotein of rat low density lipoproteins in intact animals. Fractional catabolic rate in vivo, obtained by multi-compartmental analysis of the disappearance curve of (131)I-labeled low density apolipoprotein from blood plasma, was 15.2 +/- 3.1% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of low density apolipoprotein) was 76 +/- 14 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of low density apolipoprotein mass in rats is degraded by the liver.  相似文献   

15.
Metabolic fate of rat and human lipoprotein apoproteins in the rat   总被引:7,自引:0,他引:7  
The fate of (125)I-labeled apolipoproteins was studied in vivo in rats that had received intravenous injections of (125)I-labeled rat HDL and (125)I-labeled human HDL, LDL, and VLDL. Plasma decay curves of rat and human HDL were exponential with similar half-lives in the circulation (11-12 hr). After injection, low molecular weight apolipoproteins (apoLP-alanine of human HDL and fraction HS-3 of rat HDL) were found to redistribute to other lipoproteins, predominantly VLDL. Decay curves of individual HDL proteins were constructed after lipoprotein fractionation, delipidation, and polyacrylamide gel electrophoresis. It was found that the half-lives of the different HDL apoproteins were not identical. A major rat HDL protein (52% of total counts) had a circulating half-life (t((1/2))) of 12.5 hr. Two others had a t((1/2)) of 8-9 hr while the t((1/2)) of several others was 11-12 hr. The t((1/2)) of three well-characterized human HDL apoproteins, apoLP-glutamine I, apoLP-glutamine II, and apoLP-alanine, were 13.5, 9.0, and 15.0 hr, respectively. The fate of (125)I-labeled human VLDL and LDL apoproteins in rats was similar to that described previously in humans. After injection of (125)I-labeled human VLDL into rats, apoLP-glutamic acid and apoLP-alanine rapidly transferred to rat HDL and were lost thereafter from the circulation from both VLDL and HDL. The apoLDL moiety of human VLDL moved metabolically to the LDL density range (d = 1.019-1.063) through a lipoprotein of intermediate density (d = 1.006-1.019).  相似文献   

16.
Isolated rat livers were perfused for four hours in a recirculating system containing washed rat erythrocytes. Biologically screened radioiodinated rat high density lipoproteins (1.090 < d < 1.21 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat high density lipoproteins. The protein moiety of the lipoprotein contained more than 95% of the radioiodine. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The small amount of (131)I secreted into bile was added to calculate the fractional catabolic rate. The fractional catabolic rate ranged from 0.22 to 0.63% per hour in 12 experiments and was inversely related to the size of the perfusate pool of high density apolipoprotein. The absolute catabolic rate of high density apolipoprotein (fractional catabolic rate x pool size) in three livers in which the concentration of rat HDL in the perfusate approximated that in intact rats was 69.5 +/- 10.4 micro g hr(-1) (mean +/- SD). The rate of disappearance of cholesteryl esters of rat high density lipoproteins (labeled biologically by injecting donor rats with [5-(3)H]mevalonic acid) from the liver perfusate did not exceed that of the apoprotein component. These rates were compared with catabolic rates for rat high density lipoproteins in intact rats. Fractional catabolic rate in vivo, obtained by multicompartmental analysis of the disappearance curve of (131)I-high density apolipoprotein from blood plasma, was 11.9 +/- 1.3% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of high density apolipoprotein) was 986 +/- 145 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of high density lipoproteins in blood plasma of rats is degraded directly by the liver.-Sigurdsson, G., S-P. Noel, and R. J. Havel. Quantification of the hepatic contribution to the catabolism of high density lipoproteins in rats.  相似文献   

17.
Thyroid activity of both male and female spontaneous hypertensive (SH) rats was studied by measurements of uptake and rate of release of 131-I, urinary excretion of 131-I, and thyroxine secretion rate (TSR). In addition, thyroid glands were removed at death and weighed. Radioactivity of the thyroid gland of male rats measured at intervals after administration of 131-I revealed a significantly reduced maximal uptake at 21.5 hr after injection and a reduced rate of release. The mean biological half-life of 131-I for the control group was 37.8 plus or minus 3.1 (SE) hr compared to 54.8 plus or minus 7.2 hr for hypertensives (P less than 0.05). Similar results were observed for females in that biological half-life of 131-I was 32.2 plus or minus 1.2 hr compared with 84.1 plus or minus 4.1 hr for hypertensives (P less than 0.01). Urinary excretion of 131-I by hypertensive rats at 24, 48, and 72hr after injection of 131-I did not differ from control in either experiment. Thyroid weight at autopsy was increased significantly above that of normotensive controls. TSR was measured indirectly in a third group of male spontaneously hypertensive and normotensive rats. TSR of control rats was estimated to be 0.97 mug T4/100 g body wt/day and 1.35 mug T4/100 g body wt/day for SH RATS. The results are consistent with the suggestion that the method for measurement of TSR in hypertensive rats gives an artifactually high value because TSH secretion is elevated.  相似文献   

18.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

19.
Weanling rats were fed a casein-based diet supplemented to give dietary methionine (Met) concentrations of 0.41, 0.61, and 1.50%. After 2 weeks of feeding, the rats received intraperitoneally 800 nCi of 2-14C-labeled and/or methyl-3H-labeled L-Met. The animals were killed 20 min, 1 hr, or 2 hr after the isotope injection and the specific radioactivity of adenosylmethionine (AdoMet) as well as the total acid-soluble radioactivity was analyzed in the liver and skeletal muscle. Met concentrations of the liver and skeletal muscle were increased 20-fold by the diet containing 1.50% of Met. In the liver, but not in skeletal muscle, accumulation of AdoMet closely followed changes in Met concentration. Within 2 hr after intraperitoneal injection, the rate of disappearance of 3H label from the acid-soluble fraction was slow in both tissues; increasing in the liver and decreasing in skeletal muscle with increasing dietary Met concentration. At the same time, disappearance of 14C label was slow in both tissues in the rats fed the toxic Met diet, and also in the liver of the rats fed the Met-deficient diet. Decline of the specific radioactivity of the AdoMet pool with respect to 3H label was similar to that of 14C label in the skeletal muscle at all dietary Met concentrations. In the liver, the rate of disappearance of 14C label from the AdoMet pool was markedly increased and that of the 3H label slightly decreased with increasing dietary Met supply. Met deprivation resulted in rapid disappearance of 3H label from the hepatic AdoMet pool, whereas the disappearance of the 14C label was very slow. The results indicate that hepatic Met recycling is very effective with deficient or adequate dietary Met concentrations. In skeletal muscle, the capacity to catabolize extra Met is very limited and continuous flow of Met to liver takes place. Unlike in the liver, in skeletal muscle the transsulfuration route is not adaptable to changes in Met supply and plays a minor role in Met catabolism. The approach used to determine the efficacy and adaptation of methionine salvage pathways by following simultaneously the decline of the specific radioactivities of the methyl group and the methionyl carbon chain of AdoMet following intraperitoneal injection of double-labeled Met has several advantages over that used in literature reports. It offers a reliable means of observing these metabolic pathways in whole animals without disruption of metabolite fluxes.  相似文献   

20.
125I-somatomedin A (SMA) was injected iv into rats. Distribution studies in rats showed concentrations of radioactivity to be high in kidney and plasma, low in brain, and intermediate in other tissues. The concentration of total and trichloracetic acid (TCA) precipitable radioactivity in rat blood and tissues fell at rapid rate. Ninety per cent of the radioactivity was in the urine in 24 hr, and only 15% of urine radioactivity was TCA precipitable. The half-life of the radioactivity in TCA-precipitable fraction from blood and that from tissues were nearly identical (about 6 hr). In both liver and kidney, TCA-precipitable radioactivity was detected in membrane and/or organellar fraction and cytosol fraction. Sephadex G-200 chromatography at neutral PHY AT NEUTRAL PH of plasma after injection of 125I-SMA revealed 3 peaks of radioactivity in higher molecular weight region than purified SMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号