首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In endothelial cells that form capillary-like structures in vitro a variety of genes is upregulated as we have demonstrated previously. In addition to well known genes, we also identified genes never described in endothelial cells before. Here, we report the further characterization of one selected gene called cysteine-rich motor neuron 1 (CRIM1). CRIM1 is strongly upregulated in endothelial cells during tube formation and is expressed by a variety of adherent growing cell lines whereas cell lines grown in suspension do not express CRIM1. By using antisense technology we were able to inhibit CRIM1 expression and demonstrate impaired formation of capillary-like structures in vitro in transfected endothelial cells. Furthermore, we show that CRIM1 is a glycosylated type I transmembrane protein, that accumulates at sites of close cell-to-cell contact upon stimulation. Finally, we found CRIM1 protein to be expressed by endothelial cells of the inner lining of blood vessels in vivo. Taken together our results imply a possible role of CRIM1 in capillary formation and maintainance during angiogenesis.  相似文献   

2.
Spermatogenesis is the process by which testicular spermatogonial stem cells (SSCs) self‐renew and differentiate into mature sperm in the testis. Maintaining healthy spermatogenesis requires proper proliferation of SSCs. In this study, we sought to identify factors that regulate the proliferation of SSCs. Human SSC (hSSC)‐like cells were isolated from azoospermic patients by a modified culture method and propagated in vitro. After four to five passages, the SSC‐like cells spontaneously ceased proliferating in vitro, so we collected proliferating (P)‐hSSC‐like cells at passage two and senescent (S)‐hSSC‐like cells at passage five. Suppression subtractive hybridization (SSH) was used to identify genes that were differentially expressed between the P‐hSSC‐like and S‐hSSC‐like cells. We selected positive clones up‐regulated in P‐hSSC‐like cells using SSH and functionally characterized them by reference to public databases using NCBI BLAST tools. Expression levels of genes corresponding to subtracted clones were analyzed using RT‐PCR. Finally, we confirmed the differential expression of 128 genes in positive clones of P‐hSSC‐like cells compared with S‐hSSC‐like cells and selected 23 known and 39 unknown clones for further study. Known genes were associated with diverse functions; 22% were related to metabolism. Fifteen of the known genes and two of the unknown genes were down‐regulated after senescence of hSSC‐like cells. A comparison with previous reports further suggests that known genes selected, SPP1, may be related to germ cell biogenesis and cellular proliferation. Our findings identify several potential novel candidate biomarkers of proliferating‐ and senescencet‐hSSCs, and they provide potentially important insights into the function and characteristics of human SSCs. J. Cell. Biochem. 110: 752–762, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Originally identified as axon guidance molecules, semaphorins are now known to be widely expressed mediators that play significant roles in immune responses and organ morphogenesis. However, not much is known about the signaling pathways via which they exert their organ-specific effects. Here we demonstrate that Sema4A, previously identified as an activator of T-cell-mediated immunity, is expressed in endothelial cells, where it suppresses vascular endothelial growth factor (VEGF)-mediated endothelial cell migration and proliferation in vitro and angiogenesis in vivo. Mice lacking Sema4A exhibit enhanced angiogenesis in response to VEGF or inflammatory stimuli. In addition, binding and functional experiments revealed Plexin-D1 to be a receptor for Sema4A on endothelial cells, indicating that Sema4A exerts organ-specific activities via different receptor-mediated signaling pathways: via Plexin-D1 in the endothelial cells and via T-cell immunoglobulin and mucin domain-2 in T cells. The effects of Sema4A on endothelial cells are dependent on its ability to suppress VEGF-mediated Rac activation and integrin-dependent cell adhesion. It thus appears that Sema4A-Plexin-D1 signaling negatively regulates angiogenesis.  相似文献   

4.
Identification of endothelial genes up-regulated in vivo   总被引:1,自引:0,他引:1  
Pai JT  Ruoslahti E 《Gene》2005,347(1):21-33
We have used microarrays to identify genes that are selectively expressed in endothelial cells in vivo. Analysis of freshly isolated endothelial cells from the lungs and kidneys reveals that 350 out of the 10,000 genes represented on the microarrays were expressed at higher levels than by the corresponding parenchymal cells. Thirteen of these genes were identified both in the lung and kidney screens from a subset of about 5000 genes. Many of these genes are known to be specifically expressed in endothelial cells, but about 200 genes were potentially novel endothelial genes. The preferential endothelial expression of a selected group of these genes was confirmed by quantitative polymerase chain reaction or in situ mRNA hybridization. Comparison of the genes expressed in lung and kidney endothelia revealed numerous differences. Notably, genes encoding components of an ephrin signaling pathway were highly expressed in lung endothelial cells. In summary, the genes we have identified represent potentially new pan-endothelial and tissue-specific endothelial markers.  相似文献   

5.
Hepatocyte growth factor (HGF) is a mesenchymal-derived cytokine. It exerts in vitro a motogenic effect on various target cells, which is displayed either by cell scattering, locomotion, and migration during the wound repair process of cultured cells, or invasiveness through the extracellular matrix. Although it is known that HGF influences the motogenic effect of endothelial cells, the precise effects of HGF during angiogenesis are still poorly understood. To identify genes regulated via HGF signaling in HUVECs, we used the differential display polymerase chain reaction. In this study, thymosin beta4 was found to be differentially expressed in HGF-treated HUVECs compared with control. Data from HPLC profile and induction of MMPs indicate that HGF may affect the biological behavior of HUVECs through a combination of the direct effects of HGF itself and indirect effects mediated via induction of thymosin beta4 in vitro.  相似文献   

6.
抑制消减杂交分离肿瘤血管生成相关基因   总被引:1,自引:0,他引:1  
为获得肿瘤血管生成相关基因 ,以便为抗血管形成治疗肿瘤的新策略提供有价值的靶位 ,采用人新鲜的肝癌、肺癌组织匀浆活化人脐静脉内皮细胞 (HUVEC) ,并构建了cDNA表达文库 .利用抑制消减杂交 (SSH)获得活化HUVEC高表达的基因片段 ,放射标记后筛选文库 .获得的阳性克隆进一步进行差异杂交筛选 ,去除假阳性 .共获得了 177个阳性克隆 ,对其中 74个克隆进行序列分析 ,发现它们代表 32个基因 ,其中多个与肿瘤血管生成相关 ,1个为与细胞色素c氧化酶亚单位Ⅲ同源的新基因 ,2个为功能未知的假定蛋白基因 .研究结果表明 ,用肿瘤组织匀浆模拟肿瘤内环境活化HUVEC ,并通过比较活化前后基因表达谱的差异可以分离到肿瘤血管生成相关的基因 .  相似文献   

7.
Angiogenesis requires an increase in endothelial cell proliferation to support an increase in mass of blood vessels. We designed an in vitro endothelial cell model to functionally screen for genes that regulate endothelial cell proliferation. A gain of function screen for genes that bypass p53 endothelial cell arrest identified Rem2, a Ras-like GTPase. We show that ectopic Rem2 suppresses p14(ARF) (human) or p19(ARF) (mouse) expression that leads to increased endothelial cell proliferation. Conversely, loss of ectopic Rem2 by RNA interference restores p19(ARF) expression in endothelial cells. We further show that Rem2-interacting 14-3-3 proteins are involved in the cell localization of Rem2, regulation of p19(ARF) expression, and endothelial cell proliferation. Finally, we demonstrate using the RIP1 tag2 mouse model of pancreatic disease that Rem2 is up-regulated in endothelial cells of stage IV disease. The data unravel a possible molecular mechanism for Rem2-induced angiogenesis and suggests Rem2 as a potential novel target for treating pathological angiogenesis.  相似文献   

8.
9.
Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.  相似文献   

10.
11.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is widely used as a marker during vasculogenesis and angiogenesis from embryonic stem (ES) cells. However, the expression of PECAM-1 isoforms in ES cells has not been determined. The present study was designed to determine the role of PECAM-1 isoforms during in vitro endothelial differentiation of ES cells. It was found that undifferentiated ES cells expressed high level of PECAM-1, which primarily located at cell-cell junction, but the expression of PECAM-1 was sharply down-regulated during early ES cell differentiation. In addition, undifferentiated ES cells were found the expressed all eight known alternatively spliced PECAM-1 isoforms, among them the expression of PECAM-1 isoforms lacking exon 15 or 14&15 was predominant. Quantitative analysis revealed a significant increase in the expression of PECAM-1 isoform lacking exon 12&14&15 as vascular development of ES cells. These results indicate a constitutive expression of PECAM-1 in undifferentiated murine ES cells and suggest a developmental role of PECAM-1 isoform changes during vasculogenesis and angiogenesis.  相似文献   

12.
TWEAK, a member of the TNF family, induces cell death in some tumor cell lines, but also induces proliferation of endothelial cells and angiogenesis. Recently, fibroblast growth factor-inducible 14 (Fn14) has been identified to be a TWEAK receptor, which may be responsible for the proliferation of endothelial cells and angiogenesis. In this study, we investigated the pro-inflammatory effect of TWEAK on human umbilical vein endothelial cells (HUVEC). We demonstrated that TWEAK could not only induce the proliferation and migration but also upregulate the cell surface expression of adhesion molecules such as ICAM-1 and E-selectin, and induce the secretion of chemokines such as IL-8 and MCP-1 in HUVEC. Moreover, by using an anti-Fn14 mAb that blocks the TWEAK/Fn14 interaction, we demonstrated that Fn14 was constitutively expressed on HUVEC and totally mediated the biological effects of TWEAK on HUVEC. These results indicated that TWEAK could induce pro-inflammatory reactions via Fn14 on HUVEC.  相似文献   

13.
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.  相似文献   

14.
An anti-proliferative gene BTG1 regulates angiogenesis in vitro   总被引:5,自引:0,他引:5  
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family that regulates cell growth and differentiation. To clarify the role of BTG1 in angiogenesis, we examined the regulation of BTG1 expression in cultured endothelial cells and characterized its function in in vitro models of angiogenesis. BTG1 mRNA was abundantly expressed in quiescent endothelial cells. Addition of serum and angiogenic growth factors decreased BTG1 mRNA levels in endothelial cells. In contrast, BTG1 mRNA was up-regulated in tube-forming endothelial cells on Matrigel. This up-regulation was partially blocked by neutralizing antibody against transforming growth factor-beta (TGF-beta), and TGF-beta increased BTG1 mRNA levels. Inhibition of endogenous BTG1 by overexpression of antisense BTG1 resulted in inhibited network formation, and overexpression of sense BTG1 augmented tube formation in these cell lines. BTG1-overexpressing endothelial cells displayed increased cell migration. These findings suggest that BTG1 may play an important role in the process of angiogenesis.  相似文献   

15.
Vascular endothelial growth factor (VEGF) provokes angiogenesis in vivo and stimulates growth and differentiation of endothelial cells in vitro. Although VEGF receptor-1 (VEGFR-1) and VEGFR-2 are known to be high affinity receptors for VEGF, it is not clear which of the VEGFRs are responsible for the transmission of the diverse biological responses of VEGF. For this purpose we have constructed a chimeric receptor for VEGFR-1 (CTR) and VEGFR-2 (CKR) in which the extracellular domain of each receptor was replaced with the extracellular domain of human colony-stimulating factor-1 receptor (CSF-1R), and these receptors were expressed in pig aortic endothelial (PAE) cells. We show that CKR individually expressed in PAE cells is readily tyrosine-phosphorylated in vivo, autophosphorylated in vitro, and stimulates cell proliferation in a CSF-1-dependent manner. In contrast, CTR individually expressed in PAE cells showed no significant in vivo, in vitro tyrosine phosphorylation and cell growth in response to CSF-1 stimulation. The kinase activity of CKR was essential for its biological activity, since mutation of lysine 866 to arginine abolished its in vivo, in vitro tyrosine phosphorylation and mitogenic signals. Remarkably, activation of CTR repressed CKR-mediated mitogen-activate protein kinase activation and cell proliferation. Similar effects were observed for VEGFR-2 co-expressed with VEGFR-1. Collectively, these findings demonstrate that VEGFR-2 activation plays a positive role in angiogenesis by promoting endothelial cell proliferation. In contrast, activation of VEGFR-1 plays a stationary role in angiogenesis by antagonizing VEGFR-2 responses.  相似文献   

16.
TNF-alpha plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-alpha induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-alpha on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-alpha cytotoxicity, presumably by NF-kappaB mediated induction of protective genes. However, the cytoprotective genes involved in NF-kappaB dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-alpha inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-alpha-induced expression of the RNA binding protein p54(nrb) and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-alpha mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, p21(cip1) and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-alpha induced gene expression patterns mediating the prosurvival effect of TNF-alpha in endothelial cells.  相似文献   

17.
Angiogenesis is the process by which new blood vessels are formed via proliferation of vascular endothelial cells. A variety of angiogenesis inhibitors that antagonize the effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have recently been identified. However, the mechanism by which these diverse angiogenesis inhibitors exert their common effects remains largely unknown. Caveolin-1 and -2 are known to be highly expressed in vascular endothelial cells both in vitro and in vivo. Here, we examine the potential role of caveolins in the angiogenic response. For this purpose, we used the well established human umbilical vein endothelial cell line, ECV 304. Treatment of ECV 304 cells with known angiogenic growth factors (VEGF, bFGF, or hepatocyte growth factor/scatter factor), resulted in a dramatic reduction in the expression of caveolin-1. This down-regulation event was selective for caveolin-1, as caveolin-2 levels remained constant under these conditions of growth factor stimulation. VEGF-induced down-regulation of caveolin-1 expression also resulted in the morphological loss of cell surface caveolae organelles as seen by transmission electron microscopy. A variety of well characterized angiogenesis inhibitors (including angiostatin, fumagillin, 2-methoxy estradiol, transforming growth factor-beta, and thalidomide) effectively blocked VEGF-induced down-regulation of caveolin-1 as seen by immunoblotting and immunofluorescence microscopy. However, treatment with angiogenesis inhibitors alone did not significantly affect the expression of caveolin-1. PD98059, a specific inhibitor of mitogen-activated protein kinase and a known angiogenesis inhibitor, also blocked the observed VEGF-induced down-regulation of caveolin-1. Furthermore, we show that caveolin-1 can function as a negative regulator of VEGF-R (KDR) signal transduction in vivo. Thus, down-regulation of caveolin-1 may be an important step along the pathway toward endothelial cell proliferation.  相似文献   

18.
Intra- and extracellular signaling by endothelial neuregulin-1   总被引:1,自引:0,他引:1  
Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.  相似文献   

19.
20.
Hepatocellular carcinoma (HCC) is one of the deadliest cancers with few treatment options. It is a hypervascular tumor in which angiogenesis plays a critical role in its progression. Tumor capillary endothelial cells (TECs) in HCC are known to originate from liver sinusoid endothelial cells, which then go through a capillarization process to become morphologically as well as functionally different TECs. In this work, we investigated proteins differentially expressed between freshly isolated TECs and sinusoid endothelial cells from well‐formed rat HCC using 2‐D DIGE coupled with MALDI‐TOF/TOF MS. Thirty‐eight unique proteins were identified to be differentially expressed more than twofold between the two endothelial cell types. Amongst the differentially expressed proteins, two novel endothelial markers, EH domain‐containing protein 3 and galectin‐3, were confirmed by Western blot and immunohistochemistry in both rat and human HCC samples. We showed that EH domain‐containing protein 3 is significantly down‐regulated in TECs, but galectin‐3 is up‐regulated. We propose possible roles of these two proteins in tumor vessel development in HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号