首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. An enzyme (EC 2.8.2.1) that catalyses the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to phenols was purified approx. 2000-fold from male rat livers. 2. The purified preparation did not catalyse the sulphurylation of dehydroepiandrosterone, butan-1-ol, l-tyrosine methyl ester, 1-naphthylamine or serotonin. 3. At pH8.0 and 37 degrees C the K(m) values of the enzyme for p-nitrophenol and adenosine 3'-phosphate 5'-sulphatophosphate are 51 and 14mum respectively. The K(m) value for either substrate is independent of the concentration of the other. 4. The sulphurylation of phenol is inhibited by thiol compounds and glutathione at a concentration of 3mm caused an approx. 50% decrease in enzyme activity. 5. The K(m) of the enzyme for adenosine 3'-phosphate 5'-sulphatophosphate is unaffected by the presence of added glutathione but at a concentration of 5mm-glutathione the K(m) of the enzyme for its phenolic substrate is decreased.  相似文献   

2.
1. An improved radioassay for glutathione synthetase and gamma-glutamylcysteine synthetase was developed. 2. Xenopus laevis liver gamma-glutamylcysteine synthetase was purified 324-fold by saline-bicarbonate extraction, protamine sulphate precipitation, CM-cellulose and DEAE-cellulose column chromatography, and gel filtration. 3. Rat liver gamma-glutamylcysteine synthetase was purified 11400-fold by a procedure similar to that employed for the Xenopus laevis enzyme. 4. Rat liver gamma-glutamylcysteine synthetase activity was inhibited by GSH and activated by glycine. These effects, which were not found in the enzyme from Xenopus laevis, may have a regulatory significance. 5. Isotope-exchange experiments revealed fundamental differences in the partial reactions catalysed by the rat and Xenopus laevis synthetases. The enzyme from Xenopus laevis appears to follow a Bi Bi Uni Uni Ping Pong mechanism, with glutamyl-enzyme as intermediate before the addition of cysteine and the release of gamma-glutamylcysteine. The results for the rat liver enzyme are consistent with a Tri Tri sequential mechanism.  相似文献   

3.
A new GSSG-dependent thiol:disulphide oxidoreductase was extensively purified from rat liver cytosol. The enzymic protein shows molecular weight 40 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and 43 000 as determined by thin-layer gel filtration on Bio-Gel P-100. The pI is 8.1. This enzyme converts rat liver xanthine dehydrogenase into an oxidase, in the presence of oxidized glutathione. Other disulphide compounds are either inactive or far less active than oxidized glutathione in the enzymic oxidation of rat liver xanthine dehydrogenase. The enzyme also catalyses the reduction of the disulphide bond of ricin and acts as a thioltransferase and as a GSH:insulin transhydrogenase. The enzymic activity was measured in various organs of newborn and adult rats.  相似文献   

4.
1. 2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate (tetrachlorvinphos) is demethylated by mammalian liver supernatant (100000g) protein in the presence of GSH. 2. GSH acts as an acceptor of the transferred methyl group to form S-methyl glutathione. 3. The enzyme that catalyses this reaction is present in the soluble fraction of liver from mouse, rat, rabbit and pig at similar activity. The enzyme was purified 45-fold from pig liver, dimethyl 1-naphthyl phosphate being used as assay substrate. 4. Methyl groups are readily removed from most of the substrates studied; ethyl groups are removed at one-fiftieth to one-hundredth of the rate for methyl groups. It is likely that the enzyme plays an important role in the detoxification of the phosphate triester pesticides containing CH(3)-O-P groups.  相似文献   

5.
1. An enzyme system that catalyses the sulphation of p-nitrophenol, cholesterol, alpha-ecdysone, beta-sitosterol, dehydroepiandrosterone, oestrone and four other steroids of plant and insect origin was obtained from the soluble fraction of southern-armyworm gut tissues. 2. The enzyme system required ATP and inorganic sulphate, and activity was slightly enhanced in the presence of GSH. 3. The properties of this enzyme system with respect to pH, temperature, substrate and protein concentrations and various cofactors and reagents were studied. At -23 degrees C the enzyme preparation could be stored for 2 weeks without drastic loss of activity. At the end of storage for 1 month the loss of activity was approx. 21%. 4. The possible involvement of this enzyme system in insect endocrine control is discussed.  相似文献   

6.
1. A glutathione transferase present in rat and human liver supernatant catalyses the reaction of some 2-substituted 5-nitrofuran derivatives with GSH, with formation of a conjugate and release of the nitro group as inorganic nitrite. Some of the substrates undergo the same reaction at a slower rate in the absence of enzyme. Nitrofuran derivatives commonly used as drugs, and five other drugs containing nitro groups, did not react. 2. Substrate activity in the nitrofuran derivatives showed an approximate correlation with the lability of the nitro group to alkali. 3. Optimum pH values ranging from 6.6 to 9.0 were found for the enzymic reaction with various derivatives, the values being influenced by alkali-lability and pK values of the compounds. 4. Tenfold purification of rat liver glutathione S-aryl-transferase resulted in an equal purification of the activities that catalyse the reaction of two of the nitrofuran derivatives with GSH.  相似文献   

7.
A complex of haemoglobin and GSH was prepared by incubating haemoglobin with GSH and acetylphenylhydrazine. GSH could be released from the crude preparation by incubation with NADPH. However, when the haemoglobin preparation was separated from glutathione reductase by DEAE-Sephadex chromatography, NADPH no longer released GSH. Rather, the addition of a combination of either partially purified human erythrocyte or crystalline glutathione reductase and NADPH was required to release GSH from the haemoglobin-GSH complex. This complex is commonly believed to represent a mixed disulphide of GSH and the cysteine-beta-93 thiol group. This interpretation was supported by the finding that prior alkylation of available haemoglobin thiol groups prevented the formation of the complex. By using haemoglobin-[(35)S]GSH complex as a substrate, it was shown that GSH itself released the radioactivity from the complex only very slowly. In contrast, the release of [(35)S]GSH was very rapid in the presence of NADPH and glutathione reductase. This suggests that the cleavage of the haemoglobin-GSH complex is not mediated by GSH with cyclic reduction of GSSG formed, but rather proceeds enzymically through glutathione reductase.  相似文献   

8.
beta-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) was purified 145-fold from Mycobacterium phlei ATCC354 by ammonium sulphate fractionation and DEAE-cellulose chromatography. The pH optima for oxidation and reduction reactions were 8.4 and 6.8 respectively. The purified enzyme was specific for NAD, NADH, acetoacetate and D(-)-beta-hydroxybutyrate. Km values for DL-beta-hydroxybutyrate and NAD were 7.4 mM and 0.66 mM respectively. The enzyme was inactivated by mercurial thiol inhibitors and by heat, but could be protected by NADH, Ca2+ and partially by Mn2+. The enzyme did not require metal ions and was insensitive to EDTA, glutathione, dithiothreitol, beta-mercaptoethanol and cysteine.  相似文献   

9.
Purification and properties of arylsulphatase A from chicken brain   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Chicken brain arylsulphatase A was purified 2000-fold, with overall recovery 14%, by using ammonium sulphate fractionation, ethanol precipitation, Sephadex G-200 gel filtration and DEAE-Sephadex column chromatography. 2. The purified preparation was free from beta-glucuronidase, beta-galactosidase, acid phosphatase, inorganic pyrophosphatase and adenosine 3'-phosphate 5'-sulphatophosphate sulphohydrolase activities. 3. Polyacrylamide-gel electrophoresis indicated that the purified preparation was not homogeneous. 4. Chicken brain arylsulphatase was markedly inhibited by carbonyl reagents in the presence of traces of Cu(2+) in the system. Other metal ions such as Fe(2+) and Zn(2+), were inactive. 5. Ascorbic acid alone had no effect on enzyme activity but enhances the inhibition by Cu(2+). 6. Chicken brain arylsulphatase A resembled arylsulphatase A of other animal species in its kinetic properties such as K(m) value, anomalous time-activity relationship and the inhibitory effect of phosphate, sulphite and sulphate ions. However, its electrophoretic mobility, behaviour under zinc acetate fractionation and stimulation by Ag(+) were similar to arylsulphatase B of other animal species. Thus, this enzyme did not correspond to either arylsulphatase A or arylsulphatase B but properties of both. 7. The purified enzyme preparation can degrade cerebroside 3-sulphate.  相似文献   

10.
An enzyme preparation that catalyses the deacylation of mono- and di-acyl phospholipids, galactosyl diglycerides, mono- and di-glycerides has been partially purified from potato tubers. The preparation also hydrolyses methyl and p-nitrophenyl esters and acts preferentially on esters of long-chain fatty acids. Triglycerides, wax esters and sterol esters are not hydrolysed. The same enzyme preparation catalyses acyl transfer reactions in the presence of alcohols and also catalyses the synthesis of wax esters from long-chain alcohols and free fatty acids. Gel filtration, DEAE-cellulose chromatography and free-flow electrophoresis failed to achieve any separation of the acyl-hydrolase activities towards different classes of acyl lipids (phosphatidylcholine, monogalactosyl diglyceride, mono-olein, methyl palmitate and p-nitrophenyl palmitate) or any separation of these activities from a major protein component. For each class of lipid the acyl-hydrolase activity was subject to substrate inhibition, was inhibited by relatively high concentrations of di-isopropyl phosphorofluoridate and the pH responses were changed by Triton X-100. The hydrolysis of phosphatidylcholine was stimulated 30-40-fold by Triton X-100. The specific activities of the potato enzyme with galactolipids were at least 70 times higher than those reported for a homogeneous galactolipase enzyme purified from runner bean leaves. The possibility that a single lipolytic acyl-hydrolase enzyme is responsible for the deacylation of several classes of acyl lipid is discussed.  相似文献   

11.
2-Hydroxychromene-2-carboxylate isomerase activity was found in cell-free systems from bacteria that degrade naphthalenesulfonates. The enzyme fromPseudomonas testosteroni A3 was activated by incubation with glutathione, dithiothreitol or mercaptoethanol. The highest enzyme activity was found after preincubation of the enzyme with glutathione at alkaline pH-values. A highly purified enzyme preparation converted besides 2-hydroxychromene-2-carboxylate also 2-hydroxybenzo[g]chromene-2-carboxylate (the 2-hydroxychromene-2-carboxylate formed from 1,2-dihydroxyanthracen). The addition of various metal ions or EDTA did not significantly change the catalytic activity of the enzyme. A possible reaction mechanism is proposed.Abbreviations 2,5-DHCCA 2,5-dihydroxychromene-2-carboxylate - 2,6-DHCCA 2,6-dihydroxychromene-2-carboxylate - 1,2-DHN 1,2-dihydroxynaphthalene - GSH glutathione - 2HBCCA 2-hydroxybenzo[g]chromene-2-carboxylate - HBP 2-hydroxybenzalpyruvate - HBPA 2-hydroxybenzalpyruvate aldolase - 2HCCA 2-hydroxychromene-2-carboxylate - 2HCCAI 2-hydroxychromene-2-carboxylate isomerase - 2NS naphthalene-2-sulfonate - Rt retention time  相似文献   

12.
1. Rat-liver supernatant catalyses the reaction of diethyl maleate with glutathione. 2. Evidence is presented that the enzyme involved is different from the known glutathione-conjugating enzymes, glutathione S-alkyltransferase, S-aryltransferase and S-epoxidetransferase. 3. Rat-liver supernatant catalyses the reaction of a number of other αβ-unsaturated compounds, including aldehydes, ketones, lactones, nitriles and nitro compounds, with glutathione: separate enzymes may be responsible for these reactions.  相似文献   

13.
—A sulphotransferase system of rat brain catalyses the transfer of sulphate from 3′-phosphoadenosine 5′-phosphosulphate to the low-sulphated glycosaminoglycans isolated from normal adult human brain. These were shown to be precursors of higher-sulphated glycosaminoglycans by DEAE-Sephadex column chromatography and paper electrophoresis. Nitrous acid degradation and mild acid hydrolysis of enzymically-sulphated fractions further confirmed the presence of heparan sulphate in human brain. A partially purified sulphotransferase preparation was obtained from neonatal human brain using chondroitin-4-sulphate as sulphate acceptor. This sulphotransferase catalyses the transfer of sulphate to the various uronic acid containing glycosaminoglycans. Heparan sulphate was the best sulphate acceptor followed by dermatan sulphate, N-desulphoheparin, chondroitin-4-sulphate and chondroitin-6-sulphate in decreasing order. Sulphotransferase obtained from 1-day-old rat, rabbit and guinea pig brain also had the same pattern of specificity towards various sulphate acceptors. This sulphotransferase catalyses both N-sulphation and O-sulphation. Studies on the sulphotransferase obtained from both rat and human brain of various age groups indicate that the ratio of N-sulphation: O-sulphation decreases as the brain matures.  相似文献   

14.
1. Serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase were purified from Paracoccus denitrificans strain 8944. 2. Serin transacetylase was purified 150-fold. The enzyme has a pH optimum between 7.5 and 8.0, is specific for L-serine and is inhibited by sulphydryl-group reagents. The apparent Km values for serine and acetyl-CoA are 4.0 - 10(-4) and 1.0 - 10(-4) M, respectively. Serine transacetylase is strongly inhibited by cysteine. 3. O-Acetylserine sulphydrylase was purified 450-fold. The enzymes has a sharp pH optimum at pH 7.5. In addition to catalysing the synthesis of cysteine, O-acetylserine sulphydrylase catalyses the synthesis of selenocysteine from O-acetylserine and selenide. The Km values for sulphide and O-acetylserine are 2.7 - 10(-3) and 1.25 - 10(-3) M, respectively. The enzyme was stimulated by pyridoxal phosphate and was inhibited by cystathionine, homocysteine and methionine. 4. beta-Cystathionase was purified approx. 50-fold. beta-Cystathionase has a pH optimum between pH 9.0 and 9.5, is sensitive to sulphydryl-group reagents, required pyridoxal phosphate for maximum activity and has an apparent Km for cystathionine of 4.2 - 10 (-3) M. beta-Cystathionase also catalyses the release of keto acid from lanthionine, djenkolic acid and cystine. Cysteine, O-acetylserine, homocysteine and glutathione strongly inhibit beta-cystathionase activity and homocysteine and methionine represses enzyme activity. 5. O-Acetylserine lyase was identified in crude extracts of Paracoccus denitrificans. The enzyme is specific for O-acetyl-L-serine, requires pyridoxal phosphate and is inhibied by KCN and hydroxylamine. The enzyme has a high Km value for O-acetylserine (50--100 mM).  相似文献   

15.
Homogeneous preparations of the glutathione transferases from rat liver have been tested for their ability to catalyze a number of diverse nucleophilic reactions of GSH. Although disulfide interchange with GSSG or L-cystine, and cis-trans isomerization of maleic acid, are clearly promoted by thiols in solution, the reactions were not catalyzed by the glutathione transferases. In contrast, certain more hydrophobic analogs of these compounds were found to serve as substrates. The transferases also catalyze the glutathione-dependent release of p-nitrophenol from p-nitrophenyl acetate and p-nitrophenyl trimethylacetate. These observations are consistent with the formulation that catalysis may result from close juxtaposition of sufficiently electrophilic, nonpolar compounds with GSH on the enzyme surface.  相似文献   

16.
A glutathione S-transferase (GST) with activity toward 1, 2-epoxy-2-methyl-3-butene (isoprene monoxide) and cis-1, 2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45. The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione (GSH)-dependent ring opening of various epoxides. At 5 mM GSH, the enzyme followed Michaelis-Menten kinetics for isoprene monoxide and cis-1, 2-dichloroepoxyethane, with Vmax values of 66 and 2.4 micromol min-1 mg of protein-1 and Km values of 0.3 and 0.1 mM for isoprene monoxide and cis-1,2-dichloroepoxyethane, respectively. Activities increased linearly with the GSH concentration up to 25 mM. 1H nuclear magnetic resonance spectroscopy showed that the product of GSH conjugation to isoprene monoxide was 1-hydroxy-2-glutathionyl-2-methyl-3-butene (HGMB). Thus, nucleophilic attack of GSH occurred on the tertiary carbon atom of the epoxide ring. HGMB was further converted by an NAD+-dependent dehydrogenase, and this enzyme was also purified from isoprene-grown cells. The homodimeric enzyme (two subunits of 25 kDa each) showed a high activity for HGMB, whereas simple primary and secondary alcohols were not oxidized. The enzyme catalyzed the sequential oxidation of the alcohol function to the corresponding aldehyde and carboxylic acid and followed Michaelis-Menten kinetics with respect to NAD+ and HGMB. The results suggest that the initial steps in isoprene metabolism are a monooxygenase-catalyzed conversion to isoprene monoxide, a GST-catalyzed conjugation to HGMB, and a dehydrogenase-catalyzed two-step oxidation to 2-glutathionyl-2-methyl-3-butenoic acid.  相似文献   

17.
A steroid-sensitive aldehyde dehydrogenase (EC 1.2.1.3) was purified from rabbit liver and is homogeneous by the criterion of electrophoresis in polyacrylamide gels with or without sodium dodecyl sulphate. The enzyme is tetrameric, of subunit mo.wt. 48 300, and contains no tightly bound zinc. The fluorescence of the protein is decreased in the presence of progesterone, which is inhibitory to the reactions catalysed by the enzyme. When NADH is bound to the enzyme, the fluorescence of the coenzyme is augmented to an extent independent of the presence of steroids or acetaldehyde. The purified enzyme catalyses the oxidation of acetaldehyde and glucuronolactone, and the hydrolysis of 4-nitrophenyl acetate. Each of these reactions is inhibited by progesterone in such a manner as to suggest the formation of a catalytically active enzyme-hormone complex. Diethylstilboestrol inhibits the hydrolysis of esters by this enzyme, but stimulates the oxidation of aldehydes, except at low aldehyde concentrations; the ligand is then inhibitory. NADH inhibits the hydrolysis of 4-nitrophenyl acetate by the enzyme in a partially competitive fashion.  相似文献   

18.
A putative glutathione peroxidase gene (Swiss-Prot accession number Z 68200) of Plasmodium falciparum, the causative agent of tropical malaria, was expressed in Escherichia coli and purified to electrophoretic homogeneity. Like phospholipid hydroperoxide glutathione peroxidase of mammals, it proved to be monomeric. It was active with H(2)O(2) and organic hydroperoxides but, unlike phospholipid hydroperoxide glutathione peroxidase, not with phosphatidylcholine hydroperoxide. With glutathione peroxidases it shares the ping-pong mechanism with infinite V(max) and K(m) when analyzed with GSH as substrate. As a homologue with selenocysteine replaced by cysteine, its reactions with hydroperoxides and GSH are 3 orders of magnitude slower than those of the selenoperoxidases. Unexpectedly, the plasmodial enzyme proved to react faster with thioredoxins than with GSH and most efficiently with thioredoxin of P. falciparum (Swiss-Prot accession number 202664). It is therefore reclassified as thioredoxin peroxidase. With plasmodial thioredoxin, the enzyme also displays ping-pong kinetics, yet with a limiting K(m) of 10 microm and a k(1)' of 0.55 s(-)1. The apparent k(1)' for oxidation with cumene, t-butyl, and hydrogen peroxides are 2.0 x 10(4) m(-1) s(-1), 3.3 x 10(3) m(-1) s(-1), and 2.5 x 10(3) m (-1) s(-1), respectively. k(2)' for reduction by autologous thioredoxin is 5.4 x 10(4) m(-1) s(-1) (21.2 m(-1) s(-1) for GSH). The newly discovered enzymatic function of the plasmodial gene product suggests a reconsideration of its presumed role in parasitic antioxidant defense.  相似文献   

19.
M. Godeh  J. Udvardy  G. L. Farkas 《Planta》1981,152(5):408-414
Ascorbic acid (AA) increased the phosphatase activity (pH 6.8) in 10,000 g supernatants from Anacystis nidulans. The enzyme activated by AA was deactivated by dehydroascorbic acid (DHAA). The modulation by AA/DHAA of phosphatase activity in Anacystis appears to be specific; a number of other redox compounds, known to modulate other enzymes, had no effect on the Anacystis phosphatase. A purified phosphatase preparation from Anacystis was also deactivated by DHAA. In contrast, the purified enzyme was not activated by AA, suggesting that a factor mediating the effect of AA was lost during purification. Another factor was found to protect the purified phosphatase against deactivation by DHAA. The enzyme was characterized as a phosphatase with a broad substrate specificity, an apparent molecular weight of 19,000, and a pH optimum of 6.0–7.0. Dialysis of the enzyme preparation against EDTA abolished the phosphatase activity which could be restored by Zn2+ ions and partially restored by Co2+ ions. Crude extracts also contained a latent enzyme, the phosphatase activity of which could be detected in the presence of Co2+ ions only. Zn2+ ions did not activate this enzymatically inactive protein. The Co2+-dependent phosphatase had an apparent mol. wt. of 40,000, a broad substrate specificity, and an alkaline pH-optimum. Infection of Anacystis cultures by cyanophage AS-1 resulted in a decrease in phosphatase activity. The enzyme present in 10,000 g supernatants from infected cells could not be modulated by the AA/DHAA system.Abbreviations AA ascorbic acid - DEAE diethylamino ethyl - DHAA dehydroascorbic acid - EDTA ethylene-diaminetetra-acetate - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG oxidized glutathione - HMP hexose monophosphate - P i inorganic phosphorus - pNPP p-nitrophenylphosphate - pNP p-nitrophenol - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

20.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号