首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serine proteinases are one of the largest proteolytic families of enzymes, and have diverse cellular activities in mammalian tissues. We report here the cloning and molecular characterization of a cDNA encoding the serine proteinase of the hard tick Haemaphysalis longicornis (HlSP). The HlSP cDNA is 1570 bp long and the deduced precursor protein consists of 464 amino acids with a predicted molecular mass of 50.4 kDa and a pI of 8.2. The preprotein, consisting of 443 amino acids, was predicted to include a complement C1r/C1s, Uegf, and bone morphogenic protein-1 domain, a low-density lipoprotein receptor class A domain, and a catalytic domain. HlSP sequence analysis showed high similarity to serine proteinases reported from arthropods and vertebrate animal species. Two-dimensional immunoblot analysis revealed endogenous HlSP in adult tick extracts at 50 kDa. Endogenous HlSP was also expressed in all lifecycle stages of H. longicornis. Immunohistochemical studies detected the endogenous enzyme in the midgut epithelial cells of an adult tick. The Escherichia coli-expressed recombinant HlSP was demonstrated to degrade bovine serum albumin and hydrolyze the substrate Bz-L-Arg-pNA at the rate of 30.2 micromol/min/mg protein. Further, HlSP expression was up-regulated during a blood-feeding process, indicating its involvement in the digestion of host blood components.  相似文献   

2.
In plant and microorganisms, aspartate semialdehyde dehydrogenase (ASDH) produces the branch point intermediate between the lysine and threonine/methionine pathways. In this study, we report the first cDNA cloning, purification, and characterization of a plant ASDH. The Arabidopsis thaliana ASDH is an homodimeric enzyme composed of subunits of 36 kDa. The plant enzyme exhibited a specific activity of 26 micromol NADPH oxidized min(-1) mg(-1) of protein with a K(M) value for NADPH of 92 microM. ASDH showed cooperative behavior for aspartyl phosphate with a K(0.5) value of 37 microM.  相似文献   

3.
This paper addresses the similarities and differences in the topology of the catalytic centres of human liver cytosolic beta-glucosidase and placental lysosomal glucocerebrosidase, and utilizes well-documented reversible active-site-directed inhibitors. This comparative kinetic study was performed mainly to decipher the chemical and structural nature of the active site of the cytosolic beta-glucosidase, whose physiological function is unknown. Specifically, analysis of the effects of a family of alkyl beta-glucosides consistently displayed 100-250-fold lower inhibition constants with the cytosolic broad-specificity beta-glucosidase compared with the placental glucocerebrosidase; for example, with octyl beta-D-glucoside the Ki values were 10 microM and 1490 microM for the cytosolic and lysosomal beta-glucosidases respectively. Furthermore the higher affinity of the cytosolic beta-glucosidase than glucocerebrosidase for the amphipathic alkyl beta-D-glucosides was validated by the greater increase in the free energy of binding with increasing alkyl chain length [delta delta G0 (K,)/CH2: lysosomal enzyme, 2.01 kJ/mol (480 cal/mol); cytosolic enzyme, 3.05 kJ/mol (730 cal/mol)]. The implications of the presence of highly non-polar domains in the active site of the cytosolic beta-glucosidase are discussed with regard to its potential physiological substrates.  相似文献   

4.
Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl β-gluco- and β-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid β-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes β-glucosidases (EC 3.2.1.21), β-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities.  相似文献   

5.
We report the cloning, sequencing, and expression of malK encoding the ATP-hydrolyzing subunit of the maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis. According to the deduced amino acid sequence, MalK consists of 372 amino acids with a calculated molecular weight of 41,787. It shows 47% identity with the MalK protein of Escherichia coli and high sequence conservation in important regions. C-terminal His-tagged MalK was purified. The soluble protein appeared monomeric by molecular sieve chromatography and showed ATPase activity. Enzymatic activity was highest at 80 degrees C with a Km of 150 microM and a Vmax of 0.55 micromol of ATP hydrolyzed/min/mg of protein. ADP was not a substrate but a competitive inhibitor (Ki 230 microM). GTP and CTP were also hydrolyzed. ATPase activity was inhibited by N-ethylmaleimide but not by vanadate. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the ABC transporters in these two phylogenetic branches.  相似文献   

6.
UDP-glucuronosyltransferases (UGTs) are a major family of enzymes catalyzing the transfer of glucuronic acid to a range of endogenous compounds and xenobiotics facilitating their elimination in either urine or bile. Although the dog is commonly used in drug metabolism studies, relatively little is known about the expression and activity of UGTs in this species. This report describes the molecular cloning and functional characterization of the first dog UGT, UGT1A6. The cloned protein is composed of 528 amino acids with the variable region demonstrating a 67-72% identity with the variable regions of mouse, rat, and human UGT1A6. The enzyme expressed stably in V79 cells predominantly catalyzed the glucuronidation of simple, planar phenols (e.g., for 1-naphthol, K(m) = 41 microM, V(max) = 0.07 nmol/min/mg protein), a class of compounds extensively glucuronidated by human UGT1A6. Based on sequence homology and common catalytic activity, this dog UGT1A protein appears to be the canine orthologue of human UGT1A6.  相似文献   

7.
The fructose-1,6-bisphosphate aldolase gene from the thermophilic bacterium, Anoxybacillus gonensis G2, was cloned and sequenced. Nucleotide sequence analysis revealed an open reading frame coding for a 30.9 kDa protein of 286 amino acids. The amino acid sequence shared approximately 80-90% similarity to the Bacillus sp. class II aldolases. The motifs that are responsible for the binding of a divalent metal ion and catalytic activity completely conserved. The gene encoding aldolase was overexpressed under T7 promoter control in Escherichia coli and the recombinant protein purified by nickel affinity chromatography. Kinetic characterization of the enzyme was performed at 60 degrees C, and K(m) and V(max) were found to be 576 microM and 2.4 microM min(-1) mg protein(-1), respectively. Enzyme exhibits maximal activity at pH 8.5. The activity of enzyme was completely inhibited by EDTA.  相似文献   

8.
A huge number of glycoside hydrolases are classified into the glycoside hydrolase family (GH family) based on their amino-acid sequence similarity. The glycoside hydrolases acting on α-glucosidic linkage are in GH family 4, 13, 15, 31, 63, 97, and 122. This review deals mainly with findings on GH family 31 and 97 enzymes. Research on two GH family 31 enzymes is described: clarification of the substrate recognition of Escherichia coli α-xylosidase, and glycosynthase derived from Schizosaccharomyces pombe α-glucosidase. GH family 97 is an aberrant GH family, containing inverting and retaining glycoside hydrolases. The inverting enzyme in GH family 97 displays significant similarity to retaining α-glycosidases, including GH family 97 retaining α-glycosidase, but the inverting enzyme has no catalytic nucleophile residue. It appears that a catalytic nucleophile has been eliminated during the molecular evolution in the same way as a man-made nucleophile mutant enzyme, which catalyzes the inverting reaction, as in glycosynthase and chemical rescue.  相似文献   

9.
We report here a novel ceramidase that was purified more than 150, 000-fold from the membrane fraction of mouse liver. The enzyme was a monomeric polypeptide having a molecular mass of 94 kDa and was highly glycosylated with N-glycans. The amino acid sequence of a fragment obtained from the purified enzyme was homologous to those deduced from the genes encoding an alkaline ceramidase of Pseudomonas aeruginosa and a hypotheical protein of the slime mold Dictyostelium discoideum. However, no significant sequence similarities were found in other known functional proteins including acid ceramidases of humans and mice. The enzyme hydrolyzed various N-acylsphingosines but not galactosylceramide, sulfatide, GM1a, or sphingomyelin. The enzyme exhibited the highest activity around pH 7.5 and was thus identified as a type of neutral ceramidase. The apparent K(m) and V(max) values for C12-4-nitrobenzo-2-oxa-1, 3-diazole-ceramide and C16-(14)C-ceramide were 22.3 microM and 29.1 micromol/min/mg and 72.4 microM and 3.6 micromol/min/mg, respectively. This study also clearly demonstrated that the purified 94-kDa ceramidase catalyzed the condensation of fatty acid to sphingosine to generate ceramide, but did not catalyze acyl-CoA-dependent acyl-transfer reaction.  相似文献   

10.
During the fermentation of sugars to ethanol relatively high levels of an undesirable coproduct, ethyl acetate, are also produced. With ethanologenic Escherichia coli strain KO11 as the biocatalyst, the level of ethyl acetate in beer containing 4.8% ethanol was 192 mg liter(-1). Although the E. coli genome encodes several proteins with esterase activity, neither wild-type strains nor KO11 contained significant ethyl acetate esterase activity. A simple method was developed to rapidly screen bacterial colonies for the presence of esterases which hydrolyze ethyl acetate based on pH change. This method allowed identification of Pseudomonas putida NRRL B-18435 as a source of this activity and the cloning of a new esterase gene, estZ. Recombinant EstZ esterase was purified to near homogeneity and characterized. It belongs to family IV of lipolytic enzymes and contains the conserved catalytic triad of serine, aspartic acid, and histidine. As expected, this serine esterase was inhibited by phenylmethylsulfonyl fluoride and the histidine reagent diethylpyrocarbonate. The native and subunit molecular weights of the recombinant protein were 36,000, indicating that the enzyme exists as a monomer. By using alpha-naphthyl acetate as a model substrate, optimal activity was observed at pH 7.5 and 40 degrees C. The Km and Vmax for alpha-naphthyl acetate were 18 microM and 48.1 micromol. min(-1). mg of protein(-1), respectively. Among the aliphatic esters tested, the highest activity was obtained with propyl acetate (96 micromol. min(-1). mg of protein(-1)), followed by ethyl acetate (66 micromol. min(-1). mg of protein(-1)). Expression of estZ in E. coli KO11 reduced the concentration of ethyl acetate in fermentation broth (4.8% ethanol) to less than 20 mg liter(-1).  相似文献   

11.
The nucleotide sequence of the Clostridium thermocellum F1 celQ gene, which codes for the endoglucanase CelQ, consists of 2,130 bp encoding 710 amino acids. The precursor form of CelQ has a molecular weight of 79,809 and is composed of a signal peptide, a family 9 cellulase domain, a family IIIc carbohydrate-binding module (CBM), and a dockerin domain. Truncated derivatives of CelQ were constructed: CelQdeltadoc consisted of the catalytic domain and the CBM; CelQcat consisted of the catalytic domain only. CelQdeltadoc showed strong activity toward carboxymethylcellulose (CMC) and barley beta-glucan and low activity toward Avicel, acid-swollen cellulose, lichenan, and xylan. The Vmax and Km values were 235 micromol/min/mg and 3.3 mg/ml, respectively, for CMC. By contrast, CelQcat, which was devoid of the CBM, showed negligible activity toward CMC, i.e., about 1/1,000 of the activity of CelQdeltadoc, supporting the previously proposed idea that family IIIc CBMs participate in the catalytic function of the enzyme. Immunological analysis using an antiserum raised against CelQdeltadoc confirmed that CelQ is a component of the C. thermocellum cellulosome.  相似文献   

12.
A huge number of glycoside hydrolases are classified into the glycoside hydrolase family (GH family) based on their amino-acid sequence similarity. The glycoside hydrolases acting on α-glucosidic linkage are in GH family 4, 13, 15, 31, 63, 97, and 122. This review deals mainly with findings on GH family 31 and 97 enzymes. Research on two GH family 31 enzymes is described: clarification of the substrate recognition of Escherichia coli α-xylosidase, and glycosynthase derived from Schizosaccharomyces pombe α-glucosidase. GH family 97 is an aberrant GH family, containing inverting and retaining glycoside hydrolases. The inverting enzyme in GH family 97 displays significant similarity to retaining α-glycosidases, including GH family 97 retaining α-glycosidase, but the inverting enzyme has no catalytic nucleophile residue. It appears that a catalytic nucleophile has been eliminated during the molecular evolution in the same way as a man-made nucleophile mutant enzyme, which catalyzes the inverting reaction, as in glycosynthase and chemical rescue.  相似文献   

13.
Beta-glucosidases constitute a major group among glycosylhydrolase enzymes. Out of the 82 families classified under glycosylhydrolase category, these belong to family 1 and family 3 and catalyze the selective cleavage of glucosidic bonds. This function is pivotal in many crucial biological pathways, such as degradation of structural and storage polysaccharides, cellular signaling, oncogenesis, host-pathogen interactions, as well as in a number of biotechnological applications. In recent years, interest in these enzymes has gained momentum owing to their biosynthetic abilities. The enzymes exhibit utility in syntheses of diverse oligosaccharides, glycoconjugates, alkyl- and aminoglucosides. Attempts are being made to understand the structure-function relationship of these versatile biocatalysts. Earlier reviews described the sources and properties of microbial beta-glucosidases, yeast beta-glucosidases, thermostable fungal beta-glucosidase, and the physiological functions, characteristics, and catalytic action of native beta-glucosidases from various plant, animal, and microbial sources. Recent efforts have been directed towards molecular cloning, sequencing, mutagenesis, and crystallography of the enzymes. The aim of the present article is to describe the sources and properties of recombinant beta-glucosidases, their classification schemes based on similarity at the structural and molecular levels, elucidation of structure-function relationships, directed evolution of existing enzymes toward enhanced thermostability, substrate range, biosynthetic properties, and applications.  相似文献   

14.
Human membrane 17 beta-hydroxysteroid dehydrogenase 2 is an enzyme essential in the conversion of the highly active 17beta-hydroxysteroids into their inactive keto forms in a variety of tissues. 17 beta-hydroxysteroid dehydrogenase 2 with 6 consecutive histidines at its N terminus was expressed in Sf9 insect cells. This recombinant protein retained its biological activity and facilitated the enzyme purification and provided the most suitable form in our studies. Dodecyl-beta-D-maltoside was found to be the best detergent for the solubilization, purification, and reconstitution of this enzyme. The overexpressed integral membrane protein was purified with a high catalytic activity and a purity of more than 90% by nickel-chelated chromatography. For reconstitution, the purified protein was incorporated into dodecyl-beta-D-maltoside-destabilized liposomes prepared from l-alpha-phosphatidylcholine. The detergent was removed by adsorption onto polystyrene beads. The reconstituted enzyme had much higher stability and catalytic activity (2.6 micromol/min/mg of enzyme protein with estradiol) than the detergent-solubilized and purified protein (0.9 micromol/min/mg of enzyme protein with estradiol). The purified and reconstituted protein (with a 2-kDa His tag) was proved to be a homodimer, and its functional molecular mass was calculated to be 90.4 +/- 1.2 kDa based on glycerol gradient analytical ultracentrifugation and chemical cross-linking study. The kinetic studies demonstrated that 17 beta-hydroxysteroid dehydrogenase 2 was an NAD-preferring dehydrogenase with the K(m) of NAD being 110 +/- 10 microM and that of NADP 9600 +/- 100 microM using estradiol as substrate. The kinetic constants using estradiol, testosterone, dihydrotestosterone, and 20 alpha-dihydroprogesterone as substrates were also determined.  相似文献   

15.
FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl(2), as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8+/-1.3nmol of FAD synthesized/min/mg protein and exhibited a K(M) value for FMN of 1.5+/-0.3microM. This is the first report on characterization of human FADS, and the first cloning and over-expression of FADS from an organism higher than yeast.  相似文献   

16.
Wang H  Yan Z  Yang S  Cai J  Robinson H  Ke H 《Biochemistry》2008,47(48):12760-12768
Cyclic nucleotide phosphodiesterase-8 (PDE8) is a family of cAMP-specific enzymes and plays important roles in many biological processes, including T-cell activation, testosterone production, adrenocortical hyperplasia, and thyroid function. However, no PDE8 selective inhibitors are available for trial treatment of human diseases. Here we report kinetic properties of the highly active PDE8A1 catalytic domain prepared from refolding and its crystal structures in the unliganded and 3-isobutyl-1-methylxanthine (IBMX) bound forms at 1.9 and 2.1 A resolutions, respectively. The PDE8A1 catalytic domain has a K(M) of 1.8 microM, V(max) of 6.1 micromol/min/mg, a k(cat) of 4.0 s(-1) for cAMP, and a K(M) of 1.6 mM, V(max) of 2.5 micromol/min/mg, a k(cat) of 1.6 s(-1) for cGMP, thus indicating that the substrate specificity of PDE8 is dominated by K(M). The structure of the PDE8A1 catalytic domain has similar topology as those of other PDE families but contains two extra helices around Asn685-Thr710. Since this fragment is distant from the active site of the enzyme, its impact on the catalysis is unclear. The PDE8A1 catalytic domain is insensitive to the IBMX inhibition (IC(50) = 700 microM). The unfavorable interaction of IBMX in the PDE8A1-IBMX structure suggests an important role of Tyr748 in the inhibitor binding. Indeed, the mutation of Tyr748 to phenylalanine increases the PDE8A1 sensitivity to several nonselective or family selective PDE inhibitors. Thus, the structural and mutagenesis studies provide not only insight into the enzymatic properties but also guidelines for design of PDE8 selective inhibitors.  相似文献   

17.
We report the molecular cloning and characterization of two novel β-N-acetylhexosaminidases (β-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two β-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with β-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 β-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the β-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-ΔC at a resolution of 1.8 Å; Hex1-ΔC in complex with β-N-acetylglucosamine at 1.6 Å; and Hex1-ΔC in complex with β-N-acetylgalactosamine at 1.9 Å. We made a docking model of Hex1-ΔC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic β-HEX capable of hydrolyzing glycosphingolipids.  相似文献   

18.
There are approximately 100 known members of the family 3 group of glycoside hydrolases, most of which are classified as beta-glucosidases and originate from microorganisms. The only family 3 glycoside hydrolase for which a three-dimensional structure is available is a beta-glucan exohydrolase from barley. The structural coordinates of the barley enzyme is used here to model representatives from distinct phylogenetic clusters within the family. The majority of family 3 hydrolases have an NH(2)-terminal (alpha/beta)(8) barrel connected by a short linker to a second domain, which adopts an (alpha/beta)(6) sandwich fold. In two bacterial beta-glucosidases, the order of the domains is reversed. The catalytic nucleophile, equivalent to D285 of the barley beta-glucan exohydrolase, is absolutely conserved across the family. It is located on domain 1, in a shallow site pocket near the interface of the domains. The likely catalytic acid in the barley enzyme, E491, is on domain 2. Although similarly positioned acidic residues are present in closely related members of the family, the equivalent amino acid in more distantly related members is either too far from the active site or absent. In the latter cases, the role of catalytic acid is probably assumed by other acidic amino acids from domain 1.  相似文献   

19.
We report here the molecular cloning, characterization, and catalytic mechanism of a novel glycosphingolipid-degrading β-N-acetylgalactosaminidase (β-NGA) from Paenibacillus sp. TS12 (NgaP). Consisting of 1034 putative amino acid residues, NgaP shares no sequence similarity with known proteins. Recombinant NgaP, expressed in Escherichia coli, cleaved the nonreducing terminal β-GalNAc residues of gangliotriaosylceramide and globotetraosylceramide. The enzyme hydrolyzed para-nitrophenyl-β-N-acetylgalactosaminide ~100 times faster than para-nitrophenyl-β-N-acetylglucosaminide. GalNAc thiazoline, an analog of the oxazolinium intermediate and potent inhibitor for enzymes adopting substrate-assisted catalysis, competitively inhibited the enzyme. The K(i) of the enzyme for GalNAc thiazoline was 1.3 nM, whereas that for GlcNAc thiazoline was 46.8 μM. Comparison of the secondary structure with those of known enzymes exhibiting substrate-assisted catalysis and point mutation analysis indicated that NgaP adopts substrate-assisted catalysis in which Glu-608 and Asp-607 could function as a proton donor and a stabilizer of the 2-acetamide group of the β-GalNAc at the active site, respectively. These results clearly indicate that NgaP is a β-NGA showing substrate-assisted catalysis. This is the first report describing the molecular cloning of a β-NGA adopting substrate-assisted catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号