共查询到20条相似文献,搜索用时 15 毫秒
1.
Whittaker SB Spence GR Günter Grossmann J Radford SE Moore GR 《Journal of molecular biology》2007,366(3):1001-1015
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold. 相似文献
2.
Dong H Mukaiyama A Tadokoro T Koga Y Takano K Kanaya S 《Journal of molecular biology》2008,378(1):264-272
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a kinetically robust monomeric protein. The conformational stability and folding kinetics of Tk-RNase HII were measured for nine mutant proteins in which a buried larger hydrophobic side chain is replaced by a smaller one (Leu/Ile to Ala). The mutant proteins were destabilized by 8.9 to 22.0 kJ mol− 1 as compared with the wild-type protein. The removal of each -CH2- group burial decreased the stability by 5.1 kJ mol− 1 on average in the mutant proteins of Tk-RNase HII examined. This is comparable with the value of 5.3 kJ mol− 1 obtained from experiments for proteins from organisms growing at moderate temperature. We conclude that the hydrophobic residues buried inside protein molecules contribute to the stabilization of hyperthermophilic proteins to a similar extent as proteins at normal temperature. In the folding experiments, the mutant proteins of Tk-RNase HII examined exhibited faster unfolding compared with the wild-type protein. These results indicate that the buried hydrophobic residues strongly contribute to the kinetic robustness of Tk-RNase HII. This is the first report that provides a practical cause of slow unfolding of hyperthermostable proteins. 相似文献
3.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS. 相似文献
4.
Development of a tightly packed hydrophobic core drives the folding of water-soluble globular proteins and is a key determinant of protein stability. Despite this, there remains much to be learnt about how and when the hydrophobic core becomes desolvated and tightly packed during protein folding. We have used the bacterial immunity protein Im7 to examine the specificity of hydrophobic core packing during folding. This small, four-helix protein has previously been shown to fold via a compact three-helical intermediate state. Here, overpacking substitutions, in which residue side-chain size is increased, were used to examine the specificity and malleability of core packing in the folding intermediate and rate-limiting transition state. In parallel, polar groups were introduced into the Im7 hydrophobic core via Val→Thr or Phe→Tyr substitutions and used to determine the solvation status of core residues at different stages of folding. Over 30 Im7 variants were created allowing both series of substitutions to cover all regions of the protein structure. Φ-value analysis demonstrated that the major changes in Im7 core solvation occur prior to the population of the folding intermediate, with key regions involved in docking of the short helix III remaining solvent-exposed until after the rate-limiting transition state has been traversed. In contrast, overpacking core residues revealed that some regions of the native Im7 core are remarkably malleable to increases in side-chain volume. Overpacking residues in other regions of the Im7 core result in substantial (> 2.5 kJ mol− 1) destabilisation of the native structure or even prevents efficient folding to the native state. This study provides new insights into Im7 folding; demonstrating that whilst desolvation occurs early during folding, adoption of a specifically packed core is achieved only at the very last step in the folding mechanism. 相似文献
5.
Stuart E. Knowling Angelo Miguel Figueiredo Geoffrey R. Moore 《Journal of molecular biology》2009,392(4):1074-318
The small (87-residue) α-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an α-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and ?-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III. 相似文献
6.
The development of electrostatic interactions during the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) is investigated by pH-dependent rate equilibrium free energy relationships. We show that Asp8, among six acidic residues, is involved in non-native, electrostatic interactions with K12 in the transition state for folding as well as in the denatured state. The perturbed native state pK(a) of D8 (pK(a) = 3.0) appears to be maintained through non-native interactions in both the transition state and the denatured state. Mutational effects on the stability of the transition state for protein (un)folding are often analyzed in respect to change in ground states. Thus, the interpretation of transition state analysis critically depends on an understanding of mutational effects on both the native and denatured state. Increasing evidence for structurally biased denatured states under physiological conditions raises concerns about possible denatured state effects on folding studies. We show that the structural interpretation of transition state analysis can be altered dramatically by denatured state effects. 相似文献
7.
Previous work shows that Im9 folds in a two-state transition while its homologue Im7 folds in a three-state transition via an on-pathway kinetic intermediate state (KIS), with this difference being related to frustration in the structure of Im7. We have used NMR spectroscopy to study conformational dynamics connected to the frustration. A combination of equilibrium peptide N1H/N2H exchange, model-free analyses of backbone NH relaxation data and relaxation dispersion (RD)-NMR shows that the native state of Im7 is in equilibrium with an intermediate state that is lowly populated [equilibrium intermediate state (EIS)]. Comparison of kinetic and thermodynamic parameters describing the EIS native-state equilibrium obtained by RD-NMR with previously reported parameters describing the KIS native-state equilibrium obtained from stopped-flow fluorescence studies of refolding His-tagged Im7 shows that the KIS and the EIS are the same species. 15N chemical shifts of the EIS obtained from the RD-NMR analysis show that residues forming helix III in the native state are unstructured in the EIS while other residues experiencing frustration in the native state are in structured regions of the EIS. We show that binding of Im7 and its L53A/I54A variant (which resembles the EIS as shown in previous work) to the cognate partner for Im7, the DNase domain of colicin E7, causes the dynamic processes associated with the frustration to be dampened. 相似文献
8.
Enoki S Maki K Inobe T Takahashi K Kamagata K Oroguchi T Nakatani H Tomoyori K Kuwajima K 《Journal of molecular biology》2006,361(5):969-982
Folding mechanisms of a variant of green fluorescent protein (F99S/M153T/V163A) were investigated by a wide variety of spectroscopic techniques. Equilibrium measurements on acid-induced denaturation of the protein monitored by chromophore and tryptophan fluorescence and small-angle X-ray scattering revealed that this protein accumulates at least two equilibrium intermediates, a native-like intermediate and an unfolding intermediate, the latter of which exhibits the characteristics of the molten globule state under moderately denaturing conditions at pH 4. To elucidate the role of the equilibrium unfolding intermediate in folding, a series of kinetic refolding experiments with various combinations of initial and final pH values, including pH 7.5 (the native condition), pH 4.0 (the moderately denaturing condition where the unfolding intermediate is accumulated), and pH 2.0 (the acid-denaturing condition) were carried out by monitoring chromophore and tryptophan fluorescence. Kinetic on-pathway intermediates were accumulated during the folding on the refolding reaction from pH 2.0 to 7.5. However, the signal change corresponding to the conversion from the acid-denatured to the kinetic intermediate states was significantly reduced on the refolding reaction from pH 4.0 to pH 7.5, whereas only the signal change corresponding to the above conversion was observed on the refolding reaction from pH 2.0 to pH 4.0. These results indicate that the equilibrium unfolding intermediate is composed of an ensemble of the folding intermediate species accumulated during the folding reaction, and thus support a hierarchical model of protein folding. 相似文献
9.
The cold shock protein CspB shows a five-stranded beta-sheet structure, and it folds rapidly via a native-like transition state. A previous Phi value analysis showed that most of the residues with Phi values close to one reside in strand beta1, and two of them, Lys5 and Lys7 are partially exposed charged residues. To elucidate how coulombic interactions of these two residues contribute to the energetic organisation of the folding transition state we performed comparative folding experiments in the presence of an ionic denaturant (guanidinium chloride) and a non-ionic denaturant (urea) and a double-mutant analysis. Lys5 contributes 6.6 kJ mol(-1) to the stability of the transition state, and half of it originates from screenable coulombic interactions. Lys7 contributes 5.3 kJ mol(-1), and 3.4 kJ mol(-1) of it are screened by salt. In the folded protein Lys7 interacts with Asp25, and the screenable coulombic interaction between these two residues is fully formed in the transition state. This suggests that long-range coulombic interactions such as those originating from Lys5 and Lys7 of CspB can be important for organizing and stabilizing native-like structure early in protein folding. 相似文献
10.
TI I27, a beta-sandwich domain from the human muscle protein titin, has been shown to fold via two alternative pathways, which correspond to a change in the folding mechanism. Under physiological conditions, TI I27 folds by a classical nucleation-condensation mechanism (diffuse transition state), whereas at extreme conditions of temperature and denaturant it switches to having a polarized transition state. We have used experimental Phi-values as restraints in ensemble-averaged molecular dynamics simulations to determine the ensembles of structures representing the two transition states. The comparison of these ensembles indicates that when native interactions are substantially weakened, a protein may still be able to fold if it can access an alternative transition state characterized by a much larger entropic contribution. Analysis of the probability distribution of Phi-values derived from ensemble averaged simulations, enables us to identify residues that form contacts in some members of the ensemble but not in others illustrating that many interactions present in transition states are not strictly required for the successful completion of the folding process. 相似文献
11.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein. 相似文献
12.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins. 相似文献
13.
Protein misfolding is now recognized as playing a crucial role in both normal and pathogenic folding reactions. An interesting example of misfolding at the earliest state of a natural folding reaction is provided by the alpha-subunit of tryptophan synthase, a (beta/alpha)(8) TIM barrel protein. The molecular basis for the formation of this off-pathway misfolded intermediate, I(BP), and a subsequent on-pathway intermediate, I1, was probed by mutational analysis of 20 branched aliphatic side-chains distributed throughout the sequence. The elimination of I(BP) and the substantial destabilization of I1 by replacement of a selective set of the isoleucine, leucine or valine residues (ILV) with alanine in a large ILV cluster external-to-the-barrel and spanning the N and C termini (cluster 2) implies tight-packing at most sites in both intermediates. Differential effects on I(BP) and I1 for replacements in alpha3, beta4 and alpha8 at the boundaries of cluster 2 suggest that their incorporation into I1 but not I(BP) reflects non-native folds at the edges of the crucial (beta/alpha)(1-2)beta(3) core in I(BP). The retention of I(BP) and the smaller and consistent destabilization of both I(BP) and I1 by similar replacements in an internal-to-the-barrel ILV cluster (cluster 1) and a second external-to-the-barrel ILV cluster (cluster 3) imply molten globule-like packing. The tight packing inferred, in part, for I(BP) or for all of I1 in cluster 2, but not in clusters 1 and 3, may reflect the larger size of cluster 2 and/or the enhanced number of isoleucine, leucine and valine self-contacts in and between contiguous elements of secondary structure. Tightly packed ILV-dominated hydrophobic clusters could serve as an important driving force for the earliest events in the folding and misfolding of the TIM barrel and other members of the (beta/alpha)(n) class of proteins. 相似文献
14.
Clément-Collin V Barbier A Dergunov AD Visvikis A Siest G Desmadril M Takahashi M Aggerbeck LP 《Biophysical chemistry》2006,119(2):170-185
The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4相似文献
15.
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9. 相似文献
16.
17.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles. 相似文献
18.
The significant contribution of disulfide bonds to the conformational stability of proteins is generally considered to result from an entropic destabilization of the unfolded state causing a faster escape of the molecules to the native state. However, the introduction of extra disulfide bonds into proteins as a general approach to protein stabilization yields rather inconsistent results. By modeling studies, we selected positions to introduce additional disulfide bonds into ribonuclease A at regions that had proven to be crucial for the initiation of the folding or unfolding process, respectively. However, only two out of the six variants proved to be more stable than unmodified ribonuclease A. The comparison of the thermodynamic and kinetic data disclosed a more pronounced effect on the unfolding reaction for all variants regardless of the position of the extra disulfide bond. Native-state proteolysis indicated a perturbation of the native state of the destabilized variants that obviously counterbalances the stability gain by the extra disulfide bond. 相似文献
19.
Dar TA Singh LR Islam A Anjum F Moosavi-Movahedi AA Ahmad F 《Biophysical chemistry》2007,127(3):140-148
We have carried out guanidinium chloride (GdmCl) and urea denaturations of bovine beta-lactoglobulin A (beta-lgA) at pH 2.0 and 25 degrees C, using far-UV and near-UV circular dichroism, near-UV absorption and tryptophan fluorescence spectroscopies. The stable intermediate state that occurs during GdmCl denaturation has been characterized by the far- and near-UV circular dichroism, tryptophan difference absorption, tryptophan fluorescence and 8-anilino-1-naphthalene sulphonic acid binding measurements. Following conclusions have been reached. (a) Urea-induced denaturation is not a two-state process. (b) GdmCl-induced denaturation is composed of two distinct two-state processes. (c) alpha-Helical content, burial of tryptophan residues and burial of hydrophobic surface area are more in the GdmCl-induced stable intermediate than those originally present in the native protein. 相似文献
20.
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (αTS) from Escherichia coli, a (βα)8 TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several 15N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of αTS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several β-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact β-barrel and a frayed α-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of αTS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure. 相似文献