首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The purpose of this study was to examine the gene expression profiles of yeast Saccharomyces cerevisiae subjected to straight-chain alcohols. METHODS AND RESULTS: Lipophilic alcohols with high log Pow values were more toxic to yeast than those with low log Pow values. Morphological changes after exposure to ethanol, 1-pentanol, 1-octanol were observed, whereas n-pentane as a model hydrocarbon affected the surface of the outer membrane, with little change in organelles. Using cDNA microarrays, quite a few up-regulated gene categories were classified into the category 'cell rescue, defence and virulence' by ethanol, and the category 'energy' and 'metabolism' by 1-pentanol. Meanwhile, the characteristic genes up-regulated by n-pentane were not observed, and the expression profile was distantly related to ethanol, 1-pentanol and 1-octanol. CONCLUSIONS: This study suggests that gene expression profiles at the whole genome level were intimately associated with the cell growth inhibition and morphological changes by straight-chain alcohols with differing log Pow values. SIGNIFICANCE AND IMPACT OF THE STUDY: The study of comprehensive gene expression profiles by cDNA microarrays elucidates the straight-chain alcohol adaptation mechanisms.  相似文献   

2.
Mining gene expression databases for association rules   总被引:16,自引:0,他引:16  
  相似文献   

3.
MOTIVATION: Temporal gene expression profiles provide an important characterization of gene function, as biological systems are predominantly developmental and dynamic. We propose a method of classifying collections of temporal gene expression curves in which individual expression profiles are modeled as independent realizations of a stochastic process. The method uses a recently developed functional logistic regression tool based on functional principal components, aimed at classifying gene expression curves into known gene groups. The number of eigenfunctions in the classifier can be chosen by leave-one-out cross-validation with the aim of minimizing the classification error. RESULTS: We demonstrate that this methodology provides low-error-rate classification for both yeast cell-cycle gene expression profiles and Dictyostelium cell-type specific gene expression patterns. It also works well in simulations. We compare our functional principal components approach with a B-spline implementation of functional discriminant analysis for the yeast cell-cycle data and simulations. This indicates comparative advantages of our approach which uses fewer eigenfunctions/base functions. The proposed methodology is promising for the analysis of temporal gene expression data and beyond. AVAILABILITY: MATLAB programs are available upon request.  相似文献   

4.
MOTIVATION: The ambiguity of biomedical entities, particularly of gene symbols, is a big challenge for text-mining systems in the biomedical domain. Existing knowledge sources, such as Entrez Gene and the MEDLINE database, contain information concerning the characteristics of a particular gene that could be used to disambiguate gene symbols. RESULTS: For each gene, we create a profile with different types of information automatically extracted from related MEDLINE abstracts and readily available annotated knowledge sources. We apply the gene profiles to the disambiguation task via an information retrieval method, which ranks the similarity scores between the context where the ambiguous gene is mentioned, and candidate gene profiles. The gene profile with the highest similarity score is then chosen as the correct sense. We evaluated the method on three automatically generated testing sets of mouse, fly and yeast organisms, respectively. The method achieved the highest precision of 93.9% for the mouse, 77.8% for the fly and 89.5% for the yeast. AVAILABILITY: The testing data sets and disambiguation programs are available at http://www.dbmi.columbia.edu/~hux7002/gsd2006  相似文献   

5.
6.
7.
8.
9.
MOTIVATION: The complex program of gene expression allows the cell to cope with changing genetic, developmental and environmental conditions. The accumulating large-scale measurements of gene knockout effects and molecular interactions allow us to begin to uncover regulatory and signaling pathways within the cell that connect causal to affected genes on a network of physical interactions. RESULTS: We present a novel framework, SPINE, for Signaling-regulatory Pathway INferencE. The framework aims at explaining gene expression experiments in which a gene is knocked out and as a result multiple genes change their expression levels. To this end, an integrated network of protein-protein and protein-DNA interactions is constructed, and signaling pathways connecting the causal gene to the affected genes are searched for in this network. The reconstruction problem is translated into that of assigning an activation/repression attribute with each protein so as to explain (in expectation) a maximum number of the knockout effects observed. We provide an integer programming formulation for the latter problem and solve it using a commercial solver. We validate the method by applying it to a yeast subnetwork that is involved in mating. In cross-validation tests, SPINE obtains very high accuracy in predicting knockout effects (99%). Next, we apply SPINE to the entire yeast network to predict protein effects and reconstruct signaling and regulatory pathways. Overall, we are able to infer 861 paths with confidence and assign effects to 183 genes. The predicted effects are found to be in high agreement with current biological knowledge. AVAILABILITY: The algorithm and data are available at http://cs.tau.ac.il/~roded/SPINE.html.  相似文献   

10.
We present algorithms for time-series gene expression analysis that permit the principled estimation of unobserved time points, clustering, and dataset alignment. Each expression profile is modeled as a cubic spline (piecewise polynomial) that is estimated from the observed data and every time point influences the overall smooth expression curve. We constrain the spline coefficients of genes in the same class to have similar expression patterns, while also allowing for gene specific parameters. We show that unobserved time points can be reconstructed using our method with 10-15% less error when compared to previous best methods. Our clustering algorithm operates directly on the continuous representations of gene expression profiles, and we demonstrate that this is particularly effective when applied to nonuniformly sampled data. Our continuous alignment algorithm also avoids difficulties encountered by discrete approaches. In particular, our method allows for control of the number of degrees of freedom of the warp through the specification of parameterized functions, which helps to avoid overfitting. We demonstrate that our algorithm produces stable low-error alignments on real expression data and further show a specific application to yeast knock-out data that produces biologically meaningful results.  相似文献   

11.
A computational approach is used to analyse temporal gene expression in the context of metabolic regulation. It is based on the assumption that cells developed optimal adaptation strategies to changing environmental conditions. Time-dependent enzyme profiles are calculated which optimize the function of a metabolic pathway under the constraint of limited total enzyme amount. For linear model pathways it is shown that wave-like enzyme profiles are optimal for a rapid substrate turnover. For the central metabolism of yeast cells enzyme profiles are calculated which ensure long-term homeostasis of key metabolites under conditions of a diauxic shift. These enzyme profiles are in close correlation with observed gene expression data. Our results demonstrate that optimality principles help to rationalize observed gene expression profiles.  相似文献   

12.
13.
MOTIVATION: Gene expression profile data are rapidly accumulating due to advances in microarray techniques. The abundant data are analyzed by clustering procedures to extract the useful information about the genes inherent in the data. In the clustering analyses, the systematic determination of the boundaries of gene clusters, instead of by visual inspection and biological knowledge, still remains challenging. RESULTS: We propose a statistical procedure to estimate the number of clusters in the hierarchical clustering of the expression profiles. Following the hierarchical clustering, the statistical property of the profiles at the node in the dendrogram is evaluated by a statistics-based value: the variance inflation factor in the multiple regression analysis. The evaluation leads to an automatic determination of the cluster boundaries without any additional analyses and any biological knowledge of the measured genes. The performance of the present procedure is demonstrated on the profiles of 2467 yeast genes, with very promising results. AVAILABILITY: A set of programs will be electronically sent upon request. CONTACT: horimoto@post.saga-med.ac.jp; toh@beri.co.jp  相似文献   

14.
15.
16.
MOTIVATION: Microarray technology enables the study of gene expression in large scale. The application of methods for data analysis then allows for grouping genes that show a similar expression profile and that are thus likely to be co-regulated. A relationship among genes at the biological level often presents itself by locally similar and potentially time-shifted patterns in their expression profiles. RESULTS: Here, we propose a new method (CLARITY; Clustering with Local shApe-based similaRITY) for the analysis of microarray time course experiments that uses a local shape-based similarity measure based on Spearman rank correlation. This measure does not require a normalization of the expression data and is comparably robust towards noise. It is also able to detect similar and even time-shifted sub-profiles. To this end, we implemented an approach motivated by the BLAST algorithm for sequence alignment.We used CLARITY to cluster the times series of gene expression data during the mitotic cell cycle of the yeast Saccharomyces cerevisiae. The obtained clusters were related to the MIPS functional classification to assess their biological significance. We found that several clusters were significantly enriched with genes that share similar or related functions.  相似文献   

17.
Dynamic models of gene expression and classification   总被引:3,自引:0,他引:3  
Powerful new methods, like expression profiles using cDNA arrays, have been used to monitor changes in gene expression levels as a result of a variety of metabolic, xenobiotic or pathogenic challenges. This potentially vast quantity of data enables, in principle, the dissection of the complex genetic networks that control the patterns and rhythms of gene expression in the cell. Here we present a general approach to developing dynamic models for analyzing time series of whole genome expression. In this approach, a self-consistent calculation is performed that involves both linear and non-linear response terms for interrelating gene expression levels. This calculation uses singular value decomposition (SVD) not as a statistical tool but as a means of inverting noisy and near-singular matrices. The linear transition matrix that is determined from this calculation can be used to calculate the underlying network reflected in the data. This suggests a direct method of classifying genes according to their place in the resulting network. In addition to providing a means to model such a large multivariate system this approach can be used to reduce the dimensionality of the problem in a rational and consistent way, and suppress the strong noise amplification effects often encountered with expression profile data. Non-linear and higher-order Markov behavior of the network are also determined in this self-consistent method. In data sets from yeast, we calculate the Markov matrix and the gene classes based on the linear-Markov network. These results compare favorably with previously used methods like cluster analysis. Our dynamic method appears to give a broad and general framework for data analysis and modeling of gene expression arrays. Electronic Publication  相似文献   

18.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

19.
We used the yeast genome sequences of gene families, microarray profiles and regulatory motif data to test the current wisdom that there is a strong correlation between regulatory motif structure and gene expression profile. Our results suggest that duplicate genes tend to be co-expressed but the correlation between motif content and expression similarity is generally poor, only approximately 2-3% of expression variation can be explained by the motif divergence. Our observations suggest that, in addition to the cis-regulatory motif structure in the upstream region of the gene, multiple trans-acting factors in the gene network can influence the pattern of gene expression significantly.  相似文献   

20.
Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV), indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV) from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号