首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Recently a new somatostatin analogue labelled with (99m)Tc ((99m)Tc-HYNIC-TOC) has been synthetized. Aim of this study was to evaluate the utility of (99m)Tc-HYNIC-TOC in the radionuclide imaging in patients with medullary thyroid carcinoma (MTC). MATERIAL AND METHODS: 30 patients with MTC aged 22-83 years in different stages of the disease were investigated. In 6 patients (group 1) scintigraphy was performed before surgery directly after diagnosis of MTC. Four patients (group 2) were qualified to the study in the phase of remission after surgical treatment that had been confirmed by low concentrations of calcitonin. Twenty patients (group 3) were investigated due to stagnation or recurrence confirmed by persistent hypercalcitoninemia. The scintigraphy using (99m)Tc-HYNIC-TOC (Tektrotyd, POLATOM) was performed 2 and 4 hours post injection of 20 mCi (740 MBq) of the tracer. Other imaging techniques were also employed and analysed in individual cases (US, CT, (99m)Tc(V)-DMSA, (131)I-MIBG, (99m)Tc-MDP, (111)In-octreotide and FDG-PET). RESULTS: Images obtained 2 and 4 hours p.i. were similar. In group 1, uptake of the tracer was found in the primary tumour of MTC in all patients. In group 2, a false positive result was found in 1 of 6 patients. In the remaining 5 of 6 cases no pathological foci were visualised. In group 3, uptake in the thyroid bed was found in 3 of 20 cases and in the lymph nodes in 14 of 20 patients. In 3 of 20 cases uptake in the bone metastases was found. Globally, sensitivity of the scintigraphy using (99m)Tc-HYNIC-TOC was 86.4%, specificity - 75.0%, and accuracy - 84.6%. CONCLUSION: The scintigraphy using (99m)Tc-HYNIC-TOC showed high utility in the diagnosis of MTC. Confirmation of the presence of somatostatin receptors with this method may be used for treatment planning: surgery or radionuclide therapy.  相似文献   

2.
Gastrin/CCK-2 receptors are overexpressed in a number of tumors such as medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). Recently [D-Glu1]-minigastrin (MG) has been radiolabeled with 131I, 111In, and 90Y and evaluated in patients. This study describes the labeling and evaluation of MG with technetium-99m using two different labeling approaches: HYNIC as bifunctional coupling agent and (Nalpha-His)Ac as tridentate ligand for 99mTc(CO3) labeling. Labeling was perfomed at high specific activities using Tricine and EDDA as coligands for HYNIC-MG and [99mTc(OH2)3(CO)3]+ for (Nalpha-His)Ac-MG. Stability experiments were carried out by reversed phase HPLC analysis in PBS, serum, histidine, and cysteine solutions, as well as rat liver and kidney homogenates. Receptor binding and internalization experiments were performed using CCK-2 receptor positive AR42J rat pancreatic tumor cells. Biodistribution experiments were carried out in nude mice carrying AR42J tumors by injection of 99mTc-labeled peptide with or without coinjection of 50 microg of minigastrin I human (MGh). HYNIC-MG and (Nalpha-His)Ac-MG could be radiolabeled at high specific activities (>1 Ci/micromol). For HYNIC-MG, high labeling yields (>95%) were achieved using Tricine and EDDA as coligands. Stability experiments of all 99mTc-labeled conjugates revealed a high stability of the label in PBS and serum as well as toward challenge with histidine and cysteine. Incubation in kidney homogenates resulted in a rapid degradation of all conjugates with <10% intact peptide after 60 min at 37 degrees C, with no considerable differences between the radiolabeled conjugates; a somewhat lower degradation rate was seen in liver homogenates. Protein binding varied considerably with lowest levels for 99mTc-EDDA/HYNIC-MG. Competition experiments of unlabeled conjugates on AR42J membranes versus [125I-Tyr12]-gastrin I showed high CCK-2 receptor affinity for all conjugates under study. Internalization behavior was very rapid for all radiolabeled conjugates in the order of 99mTc-(Nalpha-His)Ac-MG > 99mTc-EDDA/HYNIC-MG > 99mTc-Tricine/HYNIC-MG. In tumor-bearing nude mice the highest tumor-uptake was observed with 99mTc-EDDA/HYNIC-MG (8.1%ID/g) followed by 99mTc-Tricine/HYNIC-MG (2.2%ID/g) and 99mTc-(Nalpha-His)Ac-MG (1.2%ID/g) which correlated with kidney uptake (101.0%ID/g, 53.8%ID/g, 1.8%ID/g respectively). In this series of compounds 99mTc-EDDA/HYNIC-MG with its very high tumor/organ ratios except for kidneys seems to be the most promising agent to target CCK-2 receptors. Despite promising properties concerning receptor binding, internalization, and in vitro stability, 99mTc-(Nalpha-His)Ac-MG showed low tumor uptake in vivo.  相似文献   

3.
Various gastrin analogues and CCK-8 (Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2) are hydrolyzed in vitro by angiotensin-converting enzyme (ACE), the main and initial cleavage occurring at the Met-Asp (or Leu-Asp) bond, releasing the C-terminal dipeptide amide Asp-Phe-NH2. Tetragastrin analogues (e.g., Boc-Trp-Leu-Asp-Phe-NH2) are degraded by a vesicular membrane fraction from rat gastric mucosa, yielding the C-terminal dipeptide Asp-Phe-NH2. We report here on the degradation of gastrin analogues and CCK-8 by a gastric mucosal cell preparation containing specific gastrin receptors. We have shown that gastrin analogues were specifically degraded by gastric mucosal cells from different species (e.g., rabbit and dog) at 37 degrees C (pH 7.4), releasing the C-terminal dipeptide Asp-Phe-NH2, similarly to ACE. This cleavage was found to be temperature and pH sensitive, and was inhibited by metalloproteinase inhibitors and by captopril, strongly suggesting that this enzymatic system closely resembles ACE. We have also demonstrated that a close correlation seems to exist between the apparent affinity of the gastrin analogues for gastrin receptors on gastric mucosal cells, and their ability of being hydrolyzed by this cell preparation. Moreover, all gastrin analogues which have been demonstrated to act as gastrin antagonists remained unaffected in the incubation conditions.  相似文献   

4.
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.  相似文献   

5.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

6.
In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.  相似文献   

7.
Béhé M  Behr TM 《Biopolymers》2002,66(6):399-418
Nuclear medicine is engaged with the detection of pathological processes with the help of radionuclides. An interesting approach is to target antigens, symporters, or receptors with diagnostic and therapeutic radionuclides. Different peptide receptors like somatostatin, bombesin/GRP or VIP are (over)expressed on cancer cells, and are therefore an ideal target for the diagnosis and therapy in nuclear medicine with radiolabeled peptides. The somatostatin analogue OctreoScan [octreotide coupled with diethylene-triamine-pentaacetate (DTPA)] can be labeled with In-111 and is widely used in nuclear oncology for the staging of different tumors (e.g., carcinoids). Other peptides like neurotensin, bombesin/GRP, and VIP are under (pre)clinical investigations. The staging of metastatic medullary thyroid cancer (MTC) with the conventional radiological procedures is sometimes difficult. The high sensitivity of the pentagastrin stimulation test in detecting primary or metastatic MTC indicates the presence of tumor, but its localization is often not possible. This reaction of the tumor cells to the pentagastrin stimulation test suggests a widespread expression of the corresponding receptor type on human MTC. Indeed, autoradiographic studies demonstrated cholecystokinin (CCK)-B/gastrin receptors not only in over 90% of MTCs, but in a high percentage of small cell lung cancers, stromal ovarian, and potentially a variety of other tumors, including gastrointestinal adenocarcinomas, neuroendocrine tumors, and malignant glioma. The aim of our recent work was to develop and systematically optimize suitable radioligands for targeting CCK-B receptors in vivo and to investigate their role in the staging and therapy of MTC and other CCK-B receptor expressing malignancies. For this purpose, a variety of CCK/gastrin-related peptides, all having in common the C-terminal CCK receptor binding tetrapeptide sequence -Trp-Met-Asp-PheNH(2) or derivatives thereof, were investigated. They were members of the gastrin- or cholecystokinin families, or possessed characteristics of both, which differ by the intramolecular position of a tyrosyl moiety. Their stability and affinity were studied and optimized in vitro and in vivo; their biodistribution and therapeutic efficacy were tested in preclinical models. Best tumor uptake and tumor-to-nontumor ratios were obtained with members of the gastrin family, due to their superior selectivity and affinity for the CCK-B receptor subtype. Radiometal-labeled derivatives of minigastrin showed excellent targeting of CCK-B receptor expressing tissues in animals and healthy human volunteers. Preclinical therapy experiments in MTC-bearing animals showed significant antitumor efficacy. In a subsequent clinical study, 75 MTC patients with metastatic MTC were investigated; 43 suffered of known, 32 of occult disease. CCK-B receptor scintigraphy was performed with (111)In-DTPA-D-Glu(1)-minigastrin. The normal organ uptake was essentially confined to the stomach (and to a lower extent, to the gallbladder and, in premenopausal women, to normal breast tissue) as a result of CCK-B receptor specific binding, and to the kidneys as excretory organs. All tumor manifestations known from conventional imaging were visualized as early as 1 h p.i., with increasing tumor-to-background ratios over time; at least one lesion was detected in 29/32 patients with occult disease (patient-based sensitivity 91%). Among them were local recurrences, lymph node, pulmonary, hepatic, splenic, and bone (marrow) metastases. Eight patients with advanced metastatic disease were injected in a dose-escalation study with potentially therapeutic activities of a (90)Y-labeled minigastrin derivative at 4-6-weekly intervals (30-50 mCi/m(2) per injection for a maximum of four injections). Hematologic and renal were identified as the dose-limiting toxicities at the 40 and 50 mCi/m(2) levels. Two patients experienced partial remissions, 4 stabilization of their previously rapidly progressing disease. These data suggest that CCK-B receptor ligands may be a useful new class of receptor binding peptides for diagnosis and therapy of a variety of (CCK-B receptor expressing) tumor types. They allow for a sensitive and reliable staging of patients with metastatic MTC. Initial therapeutic results are promising, but nephrotoxicity is a major concern to be solved.  相似文献   

8.
Detection of HER2-overexpression in tumors and metastases is important for the selection of patients who will benefit from trastuzumab treatment. Earlier investigations showed successful imaging of HER2-positive tumors in patients using indium- or gallium-labeled Affibody molecules. The goal of this study was to evaluate the use of (99m)Tc-labeled Affibody molecules for the detection of HER2 expression. The Affibody molecule Z(HER2:342) with the chelator sequences mercaptoacetyl-Gly-Glu-Gly (maGEG) and mercaptoacetyl-Glu-Glu-Glu (maEEE) was synthesized by peptide synthesis and labeled with technetium-99m. Binding specificity, cellular retention, and in vitro stability were investigated. The biodistribution of (99m)Tc-maGEG-Z(HER2:342) and (99m)Tc-maEEE-Z(HER2:342) was compared with (99m)Tc-maGGG-Z(HER2:342) in normal mice, and the tumor targeting properties of (99m)Tc-maEEE-Z(HER2:342) were determined in SKOV-3 xenografted nude mice. The results showed that the Affibody molecules were efficiently labeled with technetium-99m. The labeled conjugates were highly stable in vitro with preserved HER2-binding capacity. The use of glutamic acid in the chelator sequences for (99m)Tc-labeling of Z(HER2:342) reduced the hepatobiliary excretion 3-fold with a single Gly-to-Glu substitution and 10-fold with three Gly-to-Glu substitutions. (99m)Tc-maEEE-Z(HER2:342) showed a receptor-specific tumor uptake of 7.9 +/- 1.0 %IA/g and a tumor-to-blood ratio of 38 at 4 h pi. Gamma-camera imaging with (99m)Tc-maEEE-Z(HER2:342) could detect HER2-expressing tumors in xenografts already at 1 h pi. It was concluded that peptide synthesis for the coupling of chelator sequences to Affibody molecules for (99m)Tc labeling is an efficient way to modify the in vivo kinetics. Increased hydrophilicity, combined with improved stability of the mercaptoacetyl-triglutamyl chelator, resulted in favorable biodistribution, making (99m)Tc-maEEE-Z(HER2:342) a promising tracer for clinical imaging of HER2 overexpression in tumors.  相似文献   

9.
A broad spectrum of radiolabeled peptides with high affinity for receptors expressed on tumor cells is currently under preclinical and clinical investigation for scintigraphic imaging and radionuclide therapy. The present paper evaluates two (99m)Tc-labeled forms of the C-terminal octapeptide of cholecystokinin (CCK8): sulfated (s)CCK8, with high affinity for CCK1 and CCK2 receptors, and nonsulfated (ns)CCK8, with high affinity for CCK2 receptors but low affinity for CCK1 receptors. Peptides were conjugated with the bifunctional chelator N-hydroxysuccinimidyl hydrazino niconitate (s-HYNIC). (99m)Tc-labeling, performed in the presence of nicotinic acid and tricine, was highly efficient (approximately 95%) and yielded products with a high specific activity (approximately 700 Ci/mmol) and good stability (approximately 5% release of radiolabel during 16 h incubation in phosphate buffered saline at 37 degrees C). Chinese hamster ovary cells stably expressing the CCK1 receptor (CHO-CCK1 cells) internalized approximately 3% of added (99m)Tc-sCCK8 per confluent well during 2 h at 37 degrees C. Internalization was effectively blocked by excess unlabeled sCCK8. CHO-CCK1 cells did not internalize (99m)Tc-nsCCK8. Displacement of (99m)Tc-sCCK8 and -nsCCK8 by unlabeled CCK-8 (performed at 0 degrees C to prevent internalization) revealed 50% inhibitory concentrations (IC(50)) of 8 nM and >1 microM, respectively. CHO-CCK2 cells internalized approximately 25% and approximately 5% of added (99m)Tc-sCCK8 and -nsCCK8, respectively. In both cases internalization was blocked by excess unlabeled peptide. IC(50) values for the displacement of (99m)Tc-sCCK8 and -nsCCK8 were 3 nM and 10 nM, respectively. CHO-CCK1 cell-derived tumors present in one flank of athymic mice accumulated 2.0% of injected (99m)Tc-sCCK8 per gram tissue at 1 h postinjection. This value decreased to 0.6% following coinjection with excess unlabeled peptide. Uptake of (99m)Tc-nsCCK8 was low (0.2%) and not did change by excess unlabeled peptide (0.3%). Accumulation of (99m)Tc-sCCK8 and -nsCCK8 by CHO-CCK2 cell-derived tumors (present in the other flank) amounted to 4.2% and 0.6%, respectively. In both cases uptake was significantly reduced by excess unlabeled peptide to 1.0% and 0.4% for sCCK8 and nsCCK8, respectively. Accumulation of (99m)Tc-sCCK8 was also high in pancreas (11.7%), stomach (2.0%), and kidney (2.1%), whereas uptake of (99m)Tc-nsCCK8 was high in stomach (0.7%) and kidney (1.4%). Both radiolabeled peptides showed a rapid blood clearance. In conclusion, these data show that CCK8 analogues can be efficiently labeled with (99m)Tc using s-HYNIC as chelator and nicotinic acid/tricine as coligand system without compromising receptor binding. Furthermore, the present study demonstrates that CCK1 tumors hardly accumulate (99m)Tc-nsCCK8, CCK2 tumors accumulate 2 times more (99m)Tc-sCCK8 than CCK1 tumors, and CCK2 tumors accumulate 15 times more (99m)Tc-sCCK8 than (99m)Tc-nsCCK8. Although accumulation in some nontarget organs was also higher with (99m)Tc-sCCK8, this may not reflect the human situation due to a different receptor expression pattern in humans as compared to mice. Therefore, further studies are warranted to investigate the possible use of (99m)Tc-sCCK8 for scintigraphic imaging of CCK receptor-positive tumors in humans.  相似文献   

10.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

11.
Chiu T  Rozengurt E 《FEBS letters》2001,489(1):101-106
Addition of gastrin or cholecystokinin octapeptide (CCK-8) to cultures of Rat-1 cells stably transfected with the CCK2 (CCK(B)/gastrin) receptor induced protein kinase D (PKD) activation that was detectable within 1 min and reached a maximum ( approximately 10-fold) after 2.5 min of hormonal stimulation. Half-maximal PKD activation for both CCK-8 and gastrin was achieved at 10 nM. Treatment with various concentrations of the selective PKC inhibitors Ro 31-8220 or GF-I potently blocked PKD activation induced by subsequent addition of CCK-8 in a concentration-dependent fashion. Our results indicate that PKC-dependent PKD activation is a novel early event in the action of gastrin and CCK-8 via CCK2 receptors.  相似文献   

12.
Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates   总被引:2,自引:0,他引:2  
Using immunocytochemistry, gastrin/CCK-like immunoreactivity is found in sensory nerve cells in the ectoderm of the mouth region of hydra and in nerve cells in the endoderm of all body regions of the sea anemone tealia. These results are corroborated by radioimmunoassay: One hydra contains at least 5 fmole and one tealia at least 2 nmole gastrin/CCK-like immunoreactivity. Reactivities towards gastrin and CCK antisera with different specificities suggest that the coelenterate gastrin/CCK-like peptide contains the C-terminal amino-acid sequence common to mammalian gastrin and CCK. In addition the radioimmunochemical data indicate that the coelenterate peptide also contains an amino-acid sequence that resembles the sequence 20-30 of porcine CCK-33, but that no other sequences of gastrin are present. Thus, it is probably more CCK-like than gastrin-like.  相似文献   

13.
Immunochemical studies were carried out on extracts of the neural ganglion from the ascidian Ciona intestinalis in order to the characterize the peptide(s), which react with antibodies against the C-terminal sequence common for the mammalian hormones, cholecystokinin (CCK) and gastrin. Radioimmunoassays specific for the sulphotyrosyl-containing N-terminus of CCK-8, for the common alpha-carboxyamidated C-terminus and for gastrin were used to monitor gel chromatography and reverse-phase HPLC of the extracts. Only neutral extracts contained immunoreactive material (634 (524-785) pmol eqv.CCK-8/g) (mean and range, n = 4)). HPLC revealed a small peak eluting almost like CCK-8 and a larger peak eluting earlier. By subsequent gel chromatography the larger peak eluted in the same position as sulphated CCK-8. The material was recognized almost equally by the N- and C-terminal CCK radioimmunoassays, whereas the specific C-terminal gastrin radioimmunoassay did not measure the peptides. Treatment with arylsulphatase removed the binding to the antiserum specific for the sulphotyrosyl-containing sequence of CCK. The results indicate that the ganglion of Ciona intestinalis contains a tyrosyl-sulphated peptide resembling mammalian CCK-8.  相似文献   

14.
Nichols R 《Peptides》2007,28(4):767-773
Invertebrate sulfakinins are structurally and functionally homologous to vertebrate cholecystokinin (CCK) and gastrin. To date, sulfakinins are reported to require a sulfated tyrosine for activity; sulfated and nonsulfated CCK and gastrin are active. This is the first nonsulfated sulfakinin activity reported. Nonsulfated Drosophila melanogaster sulfakinins or drosulfakinins (nsDSK I; PheAspAspTyrGlyHisMetArgPheNH2) and (nsDSK II; GlyGlyAspAspGlnPheAspAspTyrGlyHisMetArgPheNH2) decreased the frequency of contractions of adult D. melanogaster foregut (crop) in vivo. The EC50's for nsDSK I and nsDSK II were approximately 2 x 10(-9)M and approximately 3 x 10(-8)M, respectively. Nonsulfated DSK peptides also decreased the frequency of larval anterior midgut contractions. Sulfated DSK peptides decreased both adult and larval gut contractions. Whether sulfation is required for sulfakinin activity may depend on where the peptide is applied, what tissue is analyzed, or what preparation is used. D. melanogaster contains two sulfakinin receptors, DSK-R1 and DSK-R2; vertebrates contain two CCK receptors, CCK-1 and CCK-2. A sulfated DSK I analog, [Leu7] sDSK I, binds to expressed DSK-R1; the corresponding nonsulfated analog does not bind to DSK-R1. No DSK-R2 binding data are reported. Sulfated and nonsulfated CCK peptides preferentially bind to CCK-1 or CCK-2, respectively. Sulfated and nonsulfated sulfakinins may bind to DSK-R1 or DSK-R2, respectively. Sulfakinin activities, spatial and temporal distribution, and homology to CCK and gastrin suggest sulfated and nonsulfated DSK peptides act in diverse roles in the neural and gastrointestinal systems including gut emptying and satiety.  相似文献   

15.
High affinity binding of cholecystokinin to small cell lung cancer cells   总被引:2,自引:0,他引:2  
D G Yoder  T W Moody 《Peptides》1987,8(1):103-107
The binding of 125I-Bolton Hunter-cholecystokinin octapeptide (125I-BH-CCK-8) to small cell lung cancer cell lines was investigated. 125I-BH-CCK-8 bound with high affinity (Kd = 2.4 nM) to an apparent single class of sites (1700/cell) using cell line NCI-H209. Binding was time dependent and the ratio of specific/nonspecific binding was 8/1. Pharmacology studies indicated that gastrin, caerulein, CCK-33 and nonsulfated CCK-8 were potent inhibitors of specific 125I-BH-CCK-8 binding whereas CCK-26-32-NH2 was not. Because CCK receptors are present on small cell lung cancer cells, CCK may function as a regulatory peptide in this disease.  相似文献   

16.
Bombesin (BBN), a 14 amino acid peptide, is an analogue of human gastrin releasing peptide (GRP) that binds to GRP receptors (GRPr) with high affinity and specificity. The GRPr is overexpressed on a variety of human cancer cells, including prostate, breast, lung, and pancreatic cancers. The specific aim of this study was to develop (99m)Tc-radiolabeled BBN analogues that maintain high specificity for the GRPr in vivo. A preselected synthetic sequence via solid-phase peptide synthesis (SPPS) was designed to produce N(3)S-BBN (N(3)S = dimethylglycyl-l-seryl-l-cysteinylglycinamide) conjugates with the following general structure: DMG-S-C-G-X-Q-W-A-V-G-H-L-M-(NH(2)), where the spacer group, X = 0 (no spacer), omega-NH(2)(CH(2))(2)COOH, omega-NH(2)(CH(2))(4)COOH, omega-NH(2)(CH(2))(7)COOH, or omega-NH(2)-(CH(2))(10)COOH. The new BBN constructs were purified by reversed phase-HPLC (RP-HPLC). Electrospray mass spectrometry (ES-MS) was used to characterize the nonmetalated BBN conjugates. Re(V)-BBN conjugates were prepared by the reaction of Re(V)gluconate with N(3)S-X-BBN[7-14]NH(2) (X = 0 carbons, beta-Ala (beta-alanine), 5-Ava (5-aminovaleric acid), 8-Aoc (8-aminooctanoic acid), and 11-Aun (11-aminoundecanoic acid)) with gentle heating. Re-N(3)S-5-Ava-BBN[7-14]NH(2) was also prepared by the reaction of [Re(V)dimethylglycyl-l-seryl-l-cysteinylglycinamide] with 5-Ava-BBN[7-14]NH(2). ES-MS was used to determine the molecular constitution of the new Re(V) conjugates. The (99m)Tc conjugates were prepared at the tracer level by each the prelabeling, post-conjugation and pre-conjugation, postlabeling approaches from the reaction of Na[(99m)TcO(4)] with excess SnCl(2), sodium gluconate, and corresponding ligand. The (99m)Tc and Re(V) conjugates behaved similarly under identical RP-HPLC conditions. In vitro and in vivo models demonstrated biological integrity of the new conjugates.  相似文献   

17.
In recent years several radiopharmaceuticals have become available, offering new possibilities for the diagnosis and therapy of medullary thyroid carcinoma (MTC). For the diagnosis and follow-up 201TI-chloride and 99mTc(V)-DMSA are the tracers of choice. Imaging with [131I]metaiodobenzylguanidine (131I-MIBG) and 131I-anti-CEA or anti-calcitonin antibodies or fragments is less sensitive but very specific. These tracers can be used to evaluate their potential therapeutic use. Cumulative reported data on the diagnostic use of 131I-MIBG in 178 MTC patients indicate that overall 34.5% of medullary cancers concentrate MIBG. At The Netherlands Cancer Institute 131I-MIBG scintigraphy was positive in 8 of 23 patients with MTC. Four of these patients have received therapeutic amounts of 131I-MIBG, resulting in 1 partial remission and meaningful palliation in 3 patients with metastatic MTC. It is concluded that, although the preliminary experience suggests that the objective response of MTC to 131I-MIBG therapy is limited, the palliation provided to these patients, for whom there is little other treatment, may be very meaningful.  相似文献   

18.
Inactivation of cholecystokinin octapeptide in vitro involves a metalloendopeptidase (EC 3.4.24.11) also called enkephalinase that inactivated the peptide both by a sequential pathway of hydrolysis (removal of Phe-NH2 followed by cleavage of Trp-Met-Asp) and by an endopeptidase action (production of the tetrapeptides).

As enkephalinase cleaved CCK-8 at the Gly4-Trp5, Trp5-Met6 and Asp7-Phe8 bonds, we investigated the stability of analogues having: (1) substitutions of amino acids by a stereoisomer, (2) a substitution of Asp7 by a β Ala residue and (3) modifications of the Trp residue obtained by replacing the nitrogen atom in the indol ring by either an oxygen ([Bfa5]CCK-8) or a sulphur atom ([Bta5]CCK-8). Among these different CCK derivatives, [βAla7], [ Met6] and [ Trp5]CCK-8 were not hydrolyzed by enkephalinase: [ Alad]CCK-8 was rapidly cleaved by the enzyme. [Bta5] and [Bfa5]CCK-8 did not prove to be quite resistant; however the C-terminal tetrapeptides having the same modifications on the Trp residue were not cleaved although they interacted with the enzyme binding site. The stability and biological activity of the peptidase-resistant analogues of CCK-8 remain to be determined in vivo.  相似文献   


19.
INTRODUCTION: Medullary thyroid carcinoma (MTC) is usually more advanced at presentation than differentiated thyroid cancers and often has distant metastases. The primary treatment of MTC is total thyroidectomy and regional lymph node dissection. The efficacy of these procedures has been limited by the aggressiveness of the disease and metastatic spread at the time of surgery. Persistently elevated levels of calcitonin (CT) and carcinoembryonic antigen (CEA) or their increase postoperatively are indicative for residual or recurrent disease. Conventional imaging methods such as ultrasonography, computed tomography, magnetic resonance imaging and MIBI scintigraphy usually fail to find the source of calcitonin. Better imaging properties have been shown by DMSA scintigraphy, somatostatin receptor scintigraphy or by positron emission tomography (PET). The aim of the study was to evaluate the diagnostic accuracy of PET for the localisation of occult MTC in patients after surgery with increased concentrations of CT, in whom conventional imaging procedures have not been successful. MATERIAL AND METHODS: The PET investigation using (18)F-fluoro- 2-deoxy-D-glucose combined with computed tomography ((18)FDG-PET/CT) was performed at the Department of Nuclear Medicine (Oncology Centre in Bydgoszcz) between January and October 2004. In five patients with postoperative calcitonin ranging from 164 to > 2000 ng/l (normal < 10 ng/l) no tumour lesions were found using other imaging methods. RESULTS: In four of five cases, responsible lesions with a higher metabolism of FDG, indicating MTC tissue (remnants or metastases), were localised. In one patient no focus of FDG accumulation was found despite high CT concentration. PET detected tumour manifestations in the neck and the mediastinum in two patients, in the lung and the left adrenal gland in one case and in the neck and the liver in another patient. As a result of surgery for the removal of a residual tumour or metastases the accuracy of diagnosis was confirmed by histopathology in all four cases and a decrease in CT and CEA levels was observed in 3/4 cases. The metabolic imaging findings by PET/CT ensured that the surgery on these patients was successful. CONCLUSIONS: For the detection of occult residual or metastatic MTC lesions, (18)FDG-PET is a valuable procedure in imaging diagnostics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号