首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The uptake of chloromercuribenzene-p-sulphonic acid (CMBS) was studied in microdissected pancreatic islets of ob/ob-mice. After rapid initial binding, the uptake increased linearly with time, suggesting that CMBS diffused into the plasma membrane. The binding of CMBS was rapidly reversed on exposure to l-cysteine. Whereas glibenclamide had no effect, glucose and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonic acid (SITS) inhibited diffusion without affecting the initial binding. SITS, but not glucose, also inhibited CMBS-induced insulin release. The results support the hypothesis that CMBS stimulates insulin release by reacting with thiol groups in the β-cell plasma membrane. These thiol groups may be located in an anion diffusion channel, entrance to which is blocked by SITS and exit from which is inhibited by glucose. In comparison with erythrocytes, the β-cells contain a large number of superficial thiol groups, which may explain why these cells accumulate alloxan.  相似文献   

3.
Uptake studies of D- and L-glucose were performed on vesicles derived from brush-border and basal-lateral membranes. The uptake of the sugars into the vesicles was osmotically sensitive and independent of glucose metabolism. In brush-border vesicles D-glucose but not L-glucose transport was Na+ -dependent, was inhibited by phlorizin, and showed a transitory vesicle/medium ratio greater than 1, in the presence of an initial Na+ gradient. Basal-lateral membranes take up D-glucose faster than L-glucose, but the D-glucose uptake is significantly less sensitive to sodium removal and only moderately inhibited by phlorizin as compared to the brush-border fraction.  相似文献   

4.
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol‐based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid‐ordered (Lo)‐phase domains in giant unilamellar vesicles, Lo‐phase‐like domains formed at lower temperatures in giant PM vesicles, and detergent‐resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid‐like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non‐raft domains, as defined here, in the PM.  相似文献   

5.
A subpopulation of plasma membrane vesicles enriched in membrane lipid metabolites has been isolated from petals of carnation flowers and leaves of canola seedlings. This was achieved by immunopurification from a microsomal membrane preparation using region-specific antibodies raised against a recombinant polypeptide of the plasma membrane H(+)-ATPase. The properties of this subpopulation of vesicles were compared with those of purified plasma membrane isolated by partitioning in an aqueous dextran-polyethylene glycol two-phase system. The lipid composition of the immunopurified vesicles proved to be clearly distinguishable from that of phase-purified plasma membrane, indicating that they represent a unique subpopulation of plasma membrane vesicles. Specifically, the immunopurified vesicles are highly enriched in lipid metabolites, including free fatty acids, diacylglycerol, triacylglycerol and steryl and wax esters, by comparison with the phase-purified plasma membrane. These findings can be interpreted as indicating that lipid metabolites generated within the plasma membrane effectively phase-separate by moving laterally through the plane of the membrane to form discrete domains within the bilayer. It is also apparent that these domains, once formed, are released as vesicles into the cytosol, presumably by microvesiculation from the surface of the plasmalemma. Such removal may be part of normal membrane turnover.  相似文献   

6.
Several recent studies have demonstrated the ability of techniques based on immunoadsorption to selectively isolate specialized subregions of membranes, termed domains, which are derived from a larger more complex parent membrane like the plasma membrane. The immunoadsorbent is directed against a specific antigen that resides exclusively or predominantly in the membrane domain to be isolated. Thus, a monospecific antibody to the domain-specific antigen is required. In the present study we developed a method employing a modified immunoblotting strategy which could utilize polyspecific antibodies to isolate membrane vesicles derived from a specific membrane domain of the hepatocyte plasma membrane. We also used specific cell surface labeling of the hepatocyte plasma membrane by lactoperoxidase-catalyzed iodination at 4 degrees C and preparation of different sized vesicles by sonication to facilitate isolation of the specific domain. For this study, polyspecific antisera were raised in goats against a membrane fraction, denoted N2u, which is enriched in bile canalicular proteins. This antiserum recognizes, among other antigens, a 110,000 Mr polypeptide previously shown to be localized in the bile canaliculus (J. Cook et al. (1983) J. Cell. Biol. 97, 1823-1833). A monospecific antiserum was raised in rabbits against the rat hepatocyte asialoglycoprotein receptor, a sinusoidal domain-specific set of glycoproteins whose major form has a Mr of 43,000. These antisera were each coupled indirectly to different pieces of nitrocellulose by the immunoblotting protocol and were used to isolate membrane vesicles from a crude extract of liver plasma membrane prepared by sonication. The ratio of iodinated asialoglycoprotein receptor to the 110,000 Mr polypeptide in vesicles isolated by the affinity nitrocellulose immunoadsorbent method indicate a 10- to 15-fold enrichment of sinusoidal-derived vesicles relative to bile canalicular-derived membrane vesicles. These results show that the affinity nitrocellulose immunoadsorbent method can be used to isolate domain-specific vesicles. Further, the affinity immunoadsorbent method described here for the isolation of domains of the plasma membrane is an integrative one allowing isolation of vesicles present in relatively small concentration in crude cell extracts and it requires minimal ultracentrifugation time.  相似文献   

7.
Characterization of functional domains of the lymphocyte plasma membrane   总被引:1,自引:0,他引:1  
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (fraction 1) eluted freely from the affinity column, the second (fraction 2) adhered specifically to concanavalin A-Sepharose. Previous analysis showed that both subfractions were right-side-out (Resch, K., Schneider, S. and Szamel, M. (1981) Anal. Biochem. 117, 282-292). The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. After enzymatic radioiodination of thymocytes, the relative distribution of labelled proteins and externally exposed phospholipids was very similar in isolated plasma membranes and in both membrane subfractions, indicating the plasma membrane nature of the subfractions separated by affinity chromatography on concanavalin A-Sepharose. This finding was further substantiated by the nearly identical specific activities of some membrane-bound enzymes, Mg2+-ATPase, alkaline phosphatase and gamma-glutamyl transpeptidase. The specific activities of (Na+ + K+)-ATPase and of lysolecithin acyltransferase were several-fold enriched in fraction 2 compared to fraction 1, especially after rechromatography of fraction 1 on concanavalin A-Sepharose. Unseparated membrane vesicles contained two types of binding site for concanavalin A. In contrast, isolated subfractions showed a linear Scatchard plot; fraction 2 exhibited fewer binding sites for concanavalin A: the association constant was, however, 3.5-times higher than that measured in fraction 1. When plasma membranes isolated from concanavalin A-stimulated lymphocytes were separated by affinity chromatography, the yield of the two subfractions was similar to that of membranes from unstimulated lymphocytes. Upon stimulation with concanavalin A, Mg2+-ATPase, gamma-glutamyl transpeptidase and alkaline phosphatase were suppressed in their activities in both membrane subfractions. In contrast, the specific activities of (Na+ + K+)-ATPase and lysolecithin acyltransferase were enhanced preferentially in the adherent fraction (fraction 2). The data suggest the existence of domains in the plasma membrane of lymphocytes which are formed by a spatial and functional coupling of receptors with high affinity for concanavalin A, and certain membrane-bound enzymes, implicated in the initiation of lymphocyte activation.  相似文献   

8.
Summary The immunoreaction of a rabbit chromogranin A and B antiserum was studied in normal human pancreatic islets. By examination of consecutive light microscopical sections, it was revealed that, at high antiserum concentrations (1:2000 or less), the whole islet area was heavily labelled, although the peripheral glucagon (A)-cells were the most intense in their immunoreaction. At low antiserum concentrations (1:4000 or more) the A-cells still showed the same intense labelling reaction, but the central B-cells were weakly labelled. Electron microscopically, reactivity towards the chromogranin A and B antiserum and the monoclonal insulin antibodies was present in the same central electron-dense core of the B-cell secretory granules, as demonstrated after application of the immunogold technique at different antibody dilutions. In the A-cells, the chromogranin immunoreactivity was concentrated at the peripheral mantle of the secretory granules. The D-cell granules showed a weak immunolabelling. Examination of human islets with the monoclonal chromogranin A antibody LK2H10 revealed immunogold labelling only in the peripheal mantle of the A-cell granules, while the B-cell granules were unlabelled.The present results show that a chromogranin peptide is co-stored with insulin the in normal human B-cell secretory granules. Although the exact composition of this B-cell chromogranin is unknown, it is not identical to that of the chromogranin A present in the A-cell granules.  相似文献   

9.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.  相似文献   

10.
Membrane cholesterol-sphingolipid 'rafts', which are characterized by their insolubility in the non-ionic detergent Triton X-100 in the cold, have been implicated in the sorting of certain membrane proteins, such as placental alkaline phosphatase (PLAP), to the apical plasma membrane domain of epithelial cells. Here we show that prominin, an apically sorted pentaspan membrane protein, becomes associated in the trans-Golgi network with a lipid raft that is soluble in Triton X-100 but insoluble in another non-ionic detergent, Lubrol WX. At the cell surface, prominin remains insoluble in Lubrol WX and is selectively associated with microvilli, being largely segregated from the membrane subdomains containing PLAP. Cholesterol depletion results in the loss of prominin's microvillus-specific localization but does not lead to its complete intermixing with PLAP. We propose the coexistence within a membrane domain, such as the apical plasma membrane, of different cholesterol-based lipid rafts, which underlie the generation and maintenance of membrane subdomains.  相似文献   

11.
12.
Localization of the insulin receptor in caveolae of adipocyte plasma membrane.   总被引:15,自引:0,他引:15  
The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to caveolae and are colocalized with caveolin over the plasma membrane. Insulin receptor was enriched in a caveolae-enriched fraction of plasma membrane. By extraction with beta-cyclodextrin or destruction with cholesterol oxidase, cholesterol reduction attenuated insulin receptor signaling to protein phosphorylation or glucose transport. Insulin signaling was regained by spontaneous recovery or by exogenous replenishment of cholesterol. beta-Cyclodextrin treatment caused a nearly complete annihilation of caveolae invaginations as examined by electron microscopy. This suggests that the receptor is dependent on the caveolae environment for signaling. Insulin stimulation of cells prior to isolation of caveolae or insulin stimulation of the isolated caveolae fraction increased tyrosine phosphorylation of the insulin receptor in caveolae, demonstrating that insulin receptors in caveolae are functional. Our results indicate that insulin receptors are localized to caveolae in the plasma membrane of adipocytes, are signaling in caveolae, and are dependent on caveolae for signaling.  相似文献   

13.
This study compares the collagen types present in rabbit ear cartilage with those synthesized by dissociated chondrocytes in cell culture. The cartilage was first extracted with 4M-guanidinium chloride to remove proteoglycans. This step also extracted type I collagen. After pepsin solubilization of the residue, three additional, genetically distinct collagen types could be separated by fractional salt precipitation. On SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis they were identified as type II collagen, (1 alpha, 2 alpha, 3 alpha) collagen and M-collagen fragments, a collagen pattern identical with that found in hyaline cartilage. Types I, II, (1 alpha, 2 alpha, 3 alpha) and M-collagen fragments represent 20, 75, 3.5, and 1% respectively of the total collagen. In frozen sections of ear cartilage, type II collagen was located by immunofluorescence staining in the extracellular matrix, whereas type I collagen was closely associated with the chondrocytes. Within 24h after release from elastic cartilage by enzymic digestion, auricular chondrocytes began to synthesize type III collagen, in addition to the above-mentioned collagens. This was shown after labelling of freshly dissociated chondrocytes with [3H]proline 1 day after plating, fractionation of the pepsin-treated collagens from medium and cell layer by NaCl precipitation, and analysis of the fractions by CM(carboxymethyl)-cellulose chromatography and SDS/polyacrylamide-gel electrophoresis. The 0.8 M-NaCl precipitate of cell-layer extracts consisted predominantly of type II collagen. The 0.8 M-NaCl precipitate obtained from the medium contained type I, II, and III collagen. In the supernatant of the 0.8 M-NaCl precipitation remained, both in the cell extract and medium, predominantly 1 alpha-, 2 alpha-, and 3 alpha-chains and M-collagen fragments. These results indicate that auricular chondrocytes are similar to chondrocytes from hyaline cartilage in that they produce, with the exception of type I collagen, the same collagen types in vivo, but change their cellular phenotype more rapidly after transfer to monolayer culture, as indicated by the prompt onset of type III collagen synthesis.  相似文献   

14.
15.
16.
Secreted and plasma membrane proteins play crucial roles in a variety of physiological and developmental processes of multicellular organisms. Systematic cloning of the genes encoding these proteins is therefore of general interest. An effective method of trapping signal sequences was first described by Tashiro et al. (1993), and a similar yet more efficient method was reported by Klein et al. (1996) and Jacobs et al. (1997). In this study, we carried out the latter yeast-based signal sequence trap to clone genes from Arabidopsis thaliana encoding secreted and plasma membrane proteins. Of 144 sequenced cDNA clones, 18% are identical to previously cloned Arabidopsis thaliana genes, 12% are homologous to genes identified from various organisms, and 46% are novel. All of the isolated genes identical or homologous to previously reported genes are either secreted or plasma membrane proteins, and the remaining novel genes appear to contain functional signal sequences based on computer-aided sequence analysis. The full-length cDNA clones of one homologous gene and another novel gene were isolated and sequenced. The deduced amino acid sequences suggest that the former encodes a secreted protein, and the latter encodes a type 1 membrane protein. These results indicate that the signal sequence trap method is effective and useful for the isolation of plant genes encoding secreted and plasma membrane proteins.  相似文献   

17.
Many types of experiment show that the plasma membranes of cells are patchy and locally differentiated into domains. Some of these domains seem to arise through the confinement of diffusible membrane proteins. Others might arise through lipid–lipid interactions. Both types of domain are transient on a biological timescale but both could create local conditions that enhance molecular interactions, such as those that occur in receptor-mediated signaling.  相似文献   

18.
19.
20.
Compartmentalization of signaling molecules may explain, at least in part, how insulin or growth factors achieve specificity. Caveolae/rafts are specialized lipid compartments that have been implicated in insulin signaling. In the present study, we investigated the role of caveolin-enriched membrane domains (CMD) in mediating insulin signaling in rat liver. We report the existence of at least two different populations of CMD in rat liver plasma membranes (PM). One population is soluble in Triton X-100 and seems to be constitutively associated with cytoskeletal elements. The other population of CMD is located in a membrane compartment insoluble in Triton X-100 with light buoyant density and is hence designated CMD/rafts. We found evidence of rapid actin reorganization in rat liver PM in response to insulin, along with the association of CMD/rafts and insulin signaling molecules with a cell fraction enriched in cytoskeletal elements. The presence of CMD in liver parenchyma cells was confirmed by the presence of caveolin-1 in primary rat hepatocyte cultures. Cholesterol depletion, effected by incubating hepatocytes with 2 mm methyl-beta-cyclodextrin, did not permeabilize the cells or interfere with clathrin-dependent internalization. However, at this concentration, methyl-beta-cyclodextrin perturbed CMD of hepatocyte PM and inhibited insulin-induced Akt activation and glycogen synthesis but did not affect insulin-induced insulin receptor kinase tyrosine phosphorylation. These events, together with the presence of a functional insulin receptor in CMD of rat liver PM, suggest that insulin signaling is influenced by the interaction of caveolae with cytoskeletal elements in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号