共查询到20条相似文献,搜索用时 15 毫秒
1.
The spiralin genes from two phytopathogenic spiroplasmas, Spiroplasma phoeniceum and Spiroplasma kunkelii, were amplified by PCR, cloned, and sequenced. Comparison of the amino acid sequences of the five spiralins analyzed to date
confirm that the spiralins have a general amphiphilic character and possess a conserved lipoprotein signal peptide. It also
shows that a conserved central region and an amino acid repetition, including a VTKXE consensus sequence, are present in all
spiralins analyzed.
Received: 11 March 1997 / Accepted: 14 April 1997 相似文献
2.
3.
Spiroplasma kunkelii is a helical, wall-less bacterium that causes corn stunt disease. In adaptation to its phloem-inhabiting parasitic lifestyle, the bacterium has undergone a reductive evolutionary process and, as a result, possesses a compact genome with a gene set approaching the minimal complement necessary for multiplication and pathogenesis. We cloned a much-reduced cell division gene cluster from S. kunkelii and functionally characterized the key division gene, ftsZ(sk). The 1236-bp open reading frame of ftsZ(sk) is capable of encoding a protein with a calculated molecular mass of 44.1 kDa. Protein sequence alignment revealed that FtsZ(sk) is remarkably similar to FtsZ proteins from other eubacteria, and possesses the conserved GTP-binding and hydrolyzing motifs. We demonstrated that overexpression of ftsZ(sk) in Escherichia coli causes transgression of the host cell division, resulting in a filamentous phenotype. We also report, for the first time, the presence of a ftsA gene in the cell division cluster of a mollicute species. 相似文献
4.
Dally EL Barros TS Zhao Y Lin S Roe BA Davis RE 《Canadian journal of microbiology》2006,52(9):857-867
Spiroplasma kunkelii (class Mollicutes) is the characteristically helical, wall-less bacterium that causes corn stunt disease. A combination of restriction enzyme analysis, pulsed-field gel electrophoresis (PFGE), and Southern hybridization analysis was used to construct a physical and genetic map of the S. kunkelii CR2-3x chromosome. The order of restriction fragments on the map was determined by analyses of reciprocal endonuclease double digests employing I-CeuI, AscI, ApaI, EagI, SmaI, BssHII, BglI, and SalI; adjacent fragments were identified on two-dimensional pulsed-field electrophoresis gels. The size of the chromosome was estimated at 1550 kb. Oligonucleotide pairs were designed to prime the amplification of 26 S. kunkelii gene sequences in the polymerase chain reaction (PCR). Using PCR amplicons as probes, the locations of 27 S. kunkelii putative single-copy genes were positioned on the map by Southern hybridization analyses of chromosomal fragments separated in PFGE. The nucleotide sequence of the single ribosomal RNA operon was determined and its location mapped to a chromosomal segment bearing recognition sites for SalI, SmaI, EagI, and I-CeuI. 相似文献
5.
Exitianus obscurinervis (Hemiptera: Cicadellidae), a new experimental vector of Spiroplasma kunkelii
Carloni E Virla E Paradell S Carpane P Nome C Laguna I Giménez Pecci MP 《Journal of economic entomology》2011,104(6):1793-1799
"Corn stunt" caused by the mollicute Spiroplasma kunkelii (Whitcomb) is potentially one of the most severe diseases affecting the corn (Zea mays L.) crop in the Americas, and the leafhopper Dalbulus maidis (DeLong & Wolcott) is considered its most important vector. However, other insects seen quite frequently in corn crops might well be its vectors in Argentina To identify any leafhoppers species other than D. maidis that can transmit S. kunkelii, transmission assays were conducted, using individuals of Exitianus obscurinervis (St?l) collected in field and reared under controlled conditions. S. kunkelii was transmitted to corn plants by E. obscurinervis. The pathogen was transmitted to seven of the 11 plants, which showed characteristic corn stunt symptoms, and the presence of the pathogen was confirmed by DAS-ELISA. The presence of S. kunkelii in the E. obscurinervis individuals used in transmission experiments was confirmed by polymerase chain reaction and electron microscopy. The current study shows the existence of a new experimental vector of S. kunkelii, the leafhopper E. obscurinervis, which acquired spiroplasmas from infected plants and inoculated it to healthy plants. 相似文献
6.
Gustavo Moya-Raygoza Verónica Palomera-Avalos Nubia M. Chacón-Torres & Iskra M. Becerra-Chiron 《Entomologia Experimentalis et Applicata》2006,119(3):189-196
Homopteran vectors (e.g., leafhoppers) of plant pathogens are vessels for reproduction of cell wall‐free bacteria. These vectors also serve as hosts for larval parasitoid dipterans, hymenopterans, and strepsipterans. However, no study has explored the relationship among these wall‐free bacteria and parasitoid larvae within the insect host. We studied the corn stunt spiroplasma (CSS), Spiroplasma kunkelii Whitcomb (Mycoplasmatales: Spiroplasmataceae), a bacterium that originated from secondary symbionts that cause corn stunt disease in maize, Zea mays L., and its reproduction in the haemolymph of the corn leafhopper, Dalbulus maidis (Delong and Wolcott) (Homoptera: Cicadellidae). We also studied the dryinid parasitoid Gonatopus bartletti Olmi (Hymenoptera: Dryinidae), the larva of which feeds in the corn leafhopper haemolymph. Our results showed that when CSS and the wasp coexisted in D. maidis, the development of the parasitoid was not affected by S. kunkelii. Parasitoid development was successfully completed when leafhoppers acquired S. kunkelii before or after parasitism and when CSS had median (10 days) and long (20 days) incubation periods in the leafhopper before parasitization. The presence of S. kunkelii did not affect parasitoid development to the adult stage. However, polymerase chain reaction showed that the presence (survival) of S. kunkelii in the leafhopper was negatively affected by the parasitoid larva. Fewer leafhoppers had CSS before and after parasitization compared with leafhoppers that only acquired the CSS. This negative effect helps to explain the high parasitism rate by G. bartletti in D. maidis and the low presence of S. kunkelii in the corn leafhopper when CSS and the wasp parasitoid overlap throughout their geographic distribution. The parasitoid larva may negatively affect S. kunkelii by (1) producing antibacterial peptides that are toxic to CSS; (2) producing teratocytes that take nutrients from the host for larval development, but these nutrients are required by CSS; (3) affecting, indirectly, CSS through other symbiotic microorganisms; and (4) producing proteins with antibacterial activity that are present in the venom of the wasp parasitoid. 相似文献
7.
Zhao Y Hammond RW Jomantiene R Dally EL Lee IM Jia H Wu H Lin S Zhang P Kenton S Najar FZ Hua A Roe BA Fletcher J Davis RE 《Molecular genetics and genomics : MGG》2003,269(5):592-602
Spiroplasma kunkelii, the causative agent of corn stunt disease in maize ( Zea mays L.), is a helical, cell wall-less prokaryote assigned to the class Mollicutes. As part of a project to sequence the entire S. kunkelii genome, we analyzed an 85-kb DNA segment from the pathogenic strain CR2-3x. This genome segment contains 101 ORFs and two tRNA genes. The majority of the ORFs code for predicted proteins that can be assigned to respective clusters of orthologous groups (COGs). These COGs cover diverse functional categories including genetic information storage and processing, cellular processes, and metabolism. The most notable gene cluster in this genome segment is a super-operon capable of encoding 24 ribosomal proteins. The organization of genes in this operon reflects the unique evolutionary position of the spiroplasma. Gene duplications, domain rearrangements, and frameshift mutations in the segment are interpreted as indicators of phase variation in the spiroplasma. To our knowledge, this is the first analysis of a large genome segment from a plant pathogenic spiroplasma.Communicated by W. Goebel 相似文献
8.
Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis 总被引:1,自引:0,他引:1
Spiroplasma kunkelii distribution and infection mechanisms in the intestines and Malpighian tubules of Dalbulus maidis were investigated by transmission electron microscopy. Spiroplasmas were found between microvilli and in endocytic vesicles of the midgut epithelium. At the basal part, cytoplasmic vesicles contained multiple spiroplasmas with tube-like extensions and spiroplasmas accumulated between the laminae rara and densa of the basal lamina. Tip structures of flask-shaped spiroplasmas pierced the lamina densa that was discontinuous in close proximity to spiroplasmas. Spiroplasmas were found in hemolymph, crossed the basal lamina of Malpighian tubule epithelium and accumulated at high numbers in muscle cells that had cytopathogenic changes. S. kunkelii had perithrochous approximately 8nm diameter structures determined to be fimbriae protruding from the cell surface, and similar structures were adhering to the basal lamina of midgut epithelium and to external lamina of muscle cells. Further, spiroplasmas had pili-like appendages at one or both cell poles and appeared to conjugate. This is the first time that fimbriae and pili have been observed in a mollicutes. 相似文献
9.
Fibrils 3.5 nm in diameter were released from the honeybee spiroplasma (BC3) by treatment with detergents and then purified by isopycnic centrifugation. Purified fibrils were flexuous, of indeterminate length, and had an axial repeat of 8.5 nm. The fibrils were associated in pairs, but in 1 M salt formed aggregates with a marked striated appearance. Pronase completely degraded the fibrils, but trypsin had little effect. The fibrils were composed of a single protein of molecular weight 55,000 which represented about 1% of the total cell protein. A protein of molecular weight 26,000 appeared to be associated with the fibrils. The significance of this in relation to membrane attachment and the possible role of fibrils in maintenance of cell shape and in motility are discussed. 相似文献
10.
G. Moya-Raygoza V. Palomera-Avalos & C. Galaviz-Mejia 《The Annals of applied biology》2007,151(3):373-379
We studied the corn stunt spiroplasma (CSS), Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) and its vector the corn leafhopper Dalbulus maidis (Hemiptera: Cicadellidae) under field conditions in Mexico. We surveyed for the presence of CSS in D. maidis by using PCR on samples of adults collected during the 2000–01 and 2003–04 winter (dry) seasons from irrigated low‐elevation sites and un‐irrigated high‐elevation sites. Also, we determined the body size and number of mature eggs of D. maidis females collected during the dry season in 2004 and in females collected on maize seedlings in the first months (June and July) of the wet (summer) season in 2005. Our PCR results showed that CSS was present in leafhopper adults collected during the 2000–01 and 2003–04 dry seasons in irrigated low‐elevation sites. However, in un‐irrigated high‐elevation sites, CSS was present in corn leafhopper adults caught before, but not during, the dry seasons. In these un‐irrigated high‐elevation sites, adult leafhoppers without CSS were recovered during the first 2 months (November and December) of the dry season from the foliage of wild perennial grasses. Females collected on wild perennial grasses in December 2004 showed similar head width and wing length to females caught on maize seedlings in June 2005. However, females collected on maize seedlings in July 2005 had the widest heads, longest wings and highest number of mature eggs. The largest body size of these females that arrived in July 2005 indicates that they are immigrants and support the Roff’s hypothesis that insect migrants should be larger than nonmigrants. 相似文献
11.
蜜蜂螺原体的分离鉴定及致病性研究 总被引:2,自引:0,他引:2
从患"爬蜂病"的蜜蜂体内分离到一株螺原体M10,具有典型的螺原体形态和运动性,能透过0.22μm孔径的滤膜,在含青霉素浓度为2000U/mL的R-2培养基中生长良好。该菌株生长需要血清,能利用葡萄糖、精氨酸、不能利用尿素,其16S rDNA序列与Spiroplasma melliferum BC-3(=ATCC33219)同源性为99.86%。通过饲喂菌液的方式,发现供试蜜蜂4d开始出现"爬蜂病"病症,15d内71%的蜜蜂死亡,说明M10对蜜蜂具有较强的致病性,且感染致死的蜜蜂体内螺原体的分离率为100%,利用螺原体特异性16S rDNA引物在感染致死的蜜蜂的不同部位(头、胸、腹、足)均能扩增出螺原体16S rDNA,反映了螺原体对蜜蜂的系统性侵染。 相似文献
12.
Species- or lineage-specific genes can facilitate studying the unique characteristics of biological processes. Updated genome sequences in Populus trichocarpa were screened against thirty newly sequenced or resequenced plant genomes to identify a set of species-specific genes (PtSS). Forty PtSS genes have been isolated with no similarity to any sequence outside the P. trichocarpa genome, therefore have no annotated functions. Protein motif, intron/exon features, subcellular localization and gene expression were analyzed in these PtSS genes. Results reflect their basic genic characters, expression analysis and primary function exploration might provide insight to their possible involvements in lineage specific biological process in woody plants. 相似文献
13.
T Chow M J Goldenthal J D Cohen M Hegde J Marmur 《Molecular & general genetics : MGG》1983,191(3):366-371
Summary Each of at least five unlinked MAL loci (MAL1 through MAL4 and MAL6) on the yeast genome controls the ability to synthesize an inducible -D-glucosidase (maltase). A subcloned fragment of the coding sequence of the MAL6 maltase structural gene was used as a hybridization probe to investigate the physical structure of the family of MAL structural genes in the genomes of different Saccharomyces strains. Mal+ strains, each carrying a genetically defined MAL locus, were crossed with a Mal- strain and the segregation behavior of the functional locus and of sequences complementary to the maltase structural gene at that locus analyzed. The maltase structural gene sequences of each MAL locus were detected by Southern blot hybridization using BamH1 digests of genomic DNA of the meiotic products. This restriction enzyme was previously shown to cleave outside the confines of the MAL6 locus.The results of such experiments indicate that each MAL locus encompasses at least one maltase structural gene sequence homologous to that of MAL6, that yeast strains that lack functional MAL loci may or may not contain the corresponding maltase structural gene sequence, that the MAL1 maltase structural gene sequence or one of its alleles can be detected in all laboratory yeast strains examined and that each MAL locus can be identified as a characteristic BamH1 fragment of genomic DNA which includes a maltase structural gene.Yeast strains vary in the number of maltase structural gene sequences that they carry. By using the approach described in this report, the ones corresponding to the different functional MAL loci and residing within a BamH1 generated restriction fragment can be identified. 相似文献
14.
Summary Each one of at least three unlinked STA loci (STA1, STA2 and STA3), in the genome of Saccharomyces diastaticus controls starch hydrolysis by coding for an extracellular glucoamylase. Cloned STA2 sequences were used as hybridization probes to investigate the physical structure of the family of STA genes in the genomes of different Saccharomyces strains. Sta+ strains, each carrying a single genetically defined STA locus, were crossed with a Sta– strain and the segregation behavior of the functional locus (i.e. Sta+) and sequences homologous to a cloned STA2 glucoamylase structural gene at that locus were analyzed. The results indicate that in all strains examined there is a multiplicity of sequences that are homologous to STA2 DNA but that only the functional STA loci contain extensive 5 and 3 homology to each other and can be identified as residing on unique fragments of DNA; that all laboratory yeast strains examined contain extensive regions of the glucoamylase gene sequences at or closely linked to the STA1 chromosomal position; that the STA1 locus contains two distinct glucoamylase gene sequences that are closely linked to each other; and that all laboratory strains examined also contain another ubiquitous sequence that is not allelic to STA1 and is nonfunctional (Sta–), but has retained extensive sequence homology to the 5 end of the cloned STA2 gene. It was also determined that the DEX genes (which control dextrin hydrolysis in S. diastaticus), MAL5 (a gene once thought to control maltose metabolism in yeast) and the STA genes are allelic to each other in the following manner: STA1 and DEX2, STA1 and MAL5, and STA2 and DEX1 and STA3 and DEX3. 相似文献
15.
Xifeng Chen Zhimin Gu Dedong Xin Liang Hao Chengjie Liu Ji Huang Bojun Ma Hongsheng Zhang 《遗传学报》2011,38(2):77-87
16.
Xifeng Chena Zhimin Gub Dedong Xinb Liang Haob Chengjie Liub Ji Huanga Bojun Mab Hongsheng Zhang a State Key Lab of Crop Genetics Germplasm Enhancement Nanjing Agricultural University Nanjing China b College of Chemistry Life Sciences Zhejiang Normal University Jinhua China 《Acta Genetica Sinica》2011,(2)
Calcium(Ca) plays a crucial role as a second messenger in intracellular signaling elicited by developmental and environmental cues. Calcineurin B-like proteins(CBLs) and their target proteins,CBL-interacting protein kinases(CIPKs) have emerged as a key Ca~(2+)-mediated signaling network in response to stresses in plants.Bioinformatic analysis was used to identify 43 putative ZmCIPK(Zea mays CIPK) genes in the genome of maize inbred line B73.Based on gene structures,these ZmCIPKs were divided into intron-... 相似文献
17.
Han Wang Jason W Kesinger Qingchun Zhou Jonathan D Wren George Martin Sean Turner Yuhong Tang Mark Barton Frank Michael Centola 《Génome》2008,51(3):222-235
To study genes that are specifically expressed in the eyes, we employed microarray and in situ hybridization analyses to identify and characterize differentially expressed ocular genes in eyeless masterblind (mbl-/-) zebrafish (Danio rerio). Among 70 differentially expressed genes in the mbl-/- mutant identified by microarray analysis, 8 down-regulated genes were characterized, including 4 eye-specific genes, opsin 1 short-wave-sensitive 1 (opn1sw1), crystallinbetaa1b (cryba1b), crystallinbetaa2b (cryba2b), and crystallingamma M2d3 (crygm2d3); 2 eye and brain genes, ATPase, H+ transporting, lysosomal, V0 subunit c (atp6v0c) and basic leucine zipper and W2 domains 1a (bzw1a); and 2 constitutive genes, heat shock protein 8 (hspa8) and ribosomal protein L7a (rpl7a). In situ hybridization experiments confirmed down-regulation of these 8 ocular formation genes in mbl-/- zebrafish and showed their ocular and dynamic temporal expression patterns during zebrafish early development. Further, an automated literature analysis of the 70 differentially expressed genes identified a sub-network of genes with known associations, either with each other or with ocular structures or development, and shows how this study contributes to the current body of knowledge. 相似文献
18.
19.
A cryptic plasmid of the wall-less plant pathogenic mollicute, Spiroplasma kunkelii CR2-3X, was cloned and its sequence analyzed. The 14,615 bp plasmid, designated pSKU146, has a nucleotide content of 28 mol% G + C, and contains 18 potential protein-coding regions (open reading frames, ORFs), of which six encode proteins that exhibit similarity to virulence-associated proteins involved in cell-to-cell adhesion or conjugal DNA transfer. One ORF encodes a 96 kDa protein, SkARP1, that is highly similar to SARP1 adhesin involved in attachment of Spiroplasma citri to insect vector gut membrane. Five ORFs encode proteins similar to TraE and Mob in walled bacteria, and to ORFs found in the integrative, conjugative element (ICEF) of Mycoplasma fermentans, respectively. Presence of domains similar to proteins of the Type IV secretion system in pathogenic bacteria suggests that spiroplasma possesses a related translocation system. Plasmid pSKU146 also contains two identical oriT regions each containing a nick sequence characteristic of the IncP conjugative plasmid family, as well as a 58 bp palindromic sequence, palSK1. Features in pSKU146 suggest that the plasmid functions as a mobile genetic element in conjugative transmission of spiroplasma pathogenicity-related genes. 相似文献
20.