首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence flanking the bfpA locus on the enteroadherent factor plasmid of the enteropathogenic Escherichia coli (EPEC) strain B171-8 (O111:NM) was obtained to identify genes that might be required for bundle-forming pilus (BFP) biosynthesis. Deletion experiments led to the identification of a contiguous cluster of at least 12 open reading frames, including bfpA, that could direct the synthesis of a morphologically normal BFP filament. Within the bfp gene cluster, we identified open reading frames that share homology with other type IV pilus accessory genes and with genes required for transformation competence and protein secretion. Immediately upstream of the bfp gene cluster, we identified a potential replication origin including genes that are predicted to encode proteins homologous with replicase and resolvase. Restriction fragment length polymorphism analysis of DNA from six additional EPEC serotypes showed that the organization of the bfp gene cluster and its juxtaposition with a potential plasmid origin of replication are highly conserved features of the EPEC biotype.  相似文献   

2.
Abstract The fimA gene coding for the major component (fimbrin) of type 1 fimbriae was mapped within the Salmonella typhi fim gene cluster, and its nucleotide sequence determined. The deduced amino acid sequence of S. typhi fimbrin is highly homologous to that of S. typhimurium type 1 fimbrin and showed similarity to that of other enterobacterial type 1 fimbrins. Downstream of fimA , an open reading frame was found, named fimI , able to encode a fimbrin-like protein. The fimI product could represent the counterpart, in type 1 fimbriae, of the PapH protein involved in cell anchoring and length modulation of Escherichia coli Pap pili. This genetic organization was found to be common to other Salmonella serovars, including S. typhimurium and S. choleraesuis .  相似文献   

3.
4.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

5.
Glycosylation is a posttranslational modification utilized in all three domains of life. Compared to eukaryotic and bacterial systems, knowledge of the archaeal processes involved in glycosylation is limited. Recently, Methanococcus voltae flagellin proteins were found to have an N-linked trisaccharide necessary for proper flagellum assembly. Current analysis by mass spectrometry of Methanococcus maripaludis flagellin proteins also indicated the attachment of an N-glycan containing acetylated sugars. To identify genes involved in sugar biosynthesis in M. maripaludis, a putative acetyltransferase was targeted for in-frame deletion. Deletion of this gene (MMP0350) resulted in a flagellin molecular mass shift to a size comparable to that expected for underglycosylated or completely nonglycoslyated flagellins, as determined by immunoblotting. Assembled flagellar filaments were not observed by electron microscopy. Interestingly, the deletion also resulted in defective pilus anchoring. Mutant cells with a deletion of MMP0350 had very few, if any, pili attached to the cell surface compared to a nonflagellated but piliated strain. However, pili were obtained from culture supernatants of this strain, indicating that the defect was not in pilus assembly but in stable attachment to the cell surface. Complementation of MMP0350 on a plasmid restored pilus attachment, but it was unable to restore flagellation, likely because the mutant ceased to make detectable flagellin. These findings represent the first report of a biosynthetic gene involved in flagellin glycosylation in archaea. Also, it is the first gene to be associated with pili, linking flagellum and pilus structure and assembly through posttranslational modifications.  相似文献   

6.
Enterotoxigenic Escherichia coli (ETEC) strains produce a type IV pilus named Longus. We identified a 16-gene cluster involved in the biosynthesis of Longus that has 57 to 95% identity at the protein level to CFA/III, another type IV pilus of ETEC. Alleles of the Longus structural subunit gene lngA demonstrate a diversity of 12 to 19% at the protein level with strong positive selection for point replacements and horizontal transfer.  相似文献   

7.
Enteropathogenic Escherichia coli expresses a type IV fimbria known as the bundle-forming pilus (BFP) that is required for autoaggregation and localized adherence (LA) to host cells. A cluster of 14 genes is sufficient to reconstitute BFP biogenesis in a laboratory strain of E. coli. We have undertaken a systematic mutagenesis of the individual genes to determine the effect of each mutation on BFP biogenesis and LA. Here we report the construction and analysis of nonpolar mutations in six genes of the bfp cluster, bfpG, bfpB, bfpC, bfpD, bfpP, and bfpH, as well as the further analysis of a previously described bfpA mutant strain that is unable to express bundlin, the pilin protein. We found that mutations in bfpB, which encodes an outer membrane protein; bfpD, which encodes a putative nucleotide-binding protein; and bfpG and bfpC, which do not have sequence homologues in other type IV pilus systems, do not affect prebundlin expression or processing but block both BFP biogenesis and LA. The mutation in bfpP, the prepilin peptidase gene, does not affect prebundlin expression but blocks signal sequence cleavage of prebundlin, BFP biogenesis, and LA. The mutation in bfpH, which is predicted to encode a lytic transglycosylase, has no effect on prebundlin expression, prebundlin processing, BFP biogenesis, or LA. For each mutant for which altered phenotypes were detected, complementation with a plasmid containing the corresponding wild-type allele restored the wild-type phenotypes. We also found that association of prebundlin or bundlin with sucrose density flotation gradient fractions containing both inner and outer membrane proteins does not require any accessory proteins. These studies indicate that many bfp gene products are required for biogenesis of functional type IV pili but that mutations in the individual genes do not lead to the identification of new phases of pilus assembly.  相似文献   

8.
Examination of strains of Campylobacter jejuni, Campylobacter coli, and Campylobacter fetus by electron microscopy revealed that they produced peritrichous pilus-like appendages when the bacteria were grown in the presence of bile salts. Various bile-salt supplements were used and it was found that deoxycholate and chenodeoxycholic acid caused a significant enhancement of pilus production and resulted in a highly aggregative phenotype. Morphologically, the pili were between 4 and 7 nm in width and were greater than 1 μm in length. A gene, termed pspA, which encodes a predicted protein resembling protease IV of Escherichia coli, was identified in C. jejuni strain 81–176. A site-specific insertional mutation within this gene resulted in the loss of pilus synthesis as determined by electron microscopy. Insertions upstream and downstream of the gene had no effect on pilus production. The non-piliated mutant of strain 81–176 showed no reduction in adherence to or invasion of INT 407 cells in vitro. However, this mutant, while still possessing the ability to colonize ferrets, caused significantly reduced disease symptoms in this animal model.  相似文献   

9.
10.
11.
12.
Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement   总被引:113,自引:0,他引:113  
T F Meyer  N Mlawer  M So 《Cell》1982,30(1):45-52
The Neisseria gonorrhoeae pilus protein is one of the major antigenic determinants on the cell's surface. It is comprised of identical subunits of approximately 18 kd and plays a role in the infectivity and virulence of the organism. We have cloned the gene encoding a gonococcal pilus protein into Escherichia coli, and, using one of these clones as a probe in hybridization studies, we have shown that conversion of the pilus positive to pilus negative state in N. gonorrhoeae involves chromosomal rearrangement. Although the pilus protein is produced by E. coli, it does not appear to be assembled on the surface of the cell in native form.  相似文献   

13.
14.
The ability of bacteria to establish complex communities on surfaces is believed to require both bacterial-substratum and bacterial-bacterial interactions, and type IV pili appear to play a critical but incompletely defined role in both these processes. Using the human pathogen Neisseria gonorrhoeae, spontaneous mutants defective in bacterial self-aggregative behaviour but quantitatively unaltered in pilus fibre expression were isolated by a unique selective scheme. The mutants, carrying single amino acid substitutions within the conserved amino-terminal domain of the pilus fibre subunit, were reduced in the ability to adhere to a human epithelial cell line. Co-expression of the altered alleles in the context of a wild-type pilE gene confirmed that they were dominant negative with respect to aggregation and human cell adherence. Strains expressing two copies of the altered alleles produced twice as much purifiable pili but retained the aggregative and adherence defects. Finally, the defects in aggregative behaviour and adherence of each of the mutants were suppressed by a loss-of-function mutation in the twitching motility gene pilT. The correlations between self-aggregation and the net capacity of the microbial population to adhere efficiently demonstrates the potential significance of bacterial cell-cell interactions to colonization.  相似文献   

15.
Multiple pilus gene clusters have been identified in several gram-positive bacterial genomes sequenced to date, including the Actinomycetales, clostridia, streptococci, and corynebacteria. The genome of Corynebacterium diphtheriae contains three pilus gene clusters, two of which have been previously characterized. Here, we report the characterization of the third pilus encoded by the spaHIG cluster. By using electron microscopy and biochemical analysis, we demonstrate that SpaH forms the pilus shaft, while SpaI decorates the structure and SpaG is largely located at the pilus tip. The assembly of the SpaHIG pilus requires a specific sortase located within the spaHIG pilus gene cluster. Deletion of genes specific for the synthesis and polymerization of the other two pilus types does not affect the SpaHIG pilus. Moreover, SpaH but not SpaI or SpaG is essential for the formation of the filament. When expressed under the control of an inducible promoter, the amount of the SpaH pilin regulates pilus length; no pili are assembled from an SpaH precursor that has an alanine in place of the conserved lysine of the SpaH pilin motif. Thus, the spaHIG pilus gene cluster encodes a pilus structure that is independently assembled and antigenically distinct from other pili of C. diphtheriae. We incorporate these findings in a model of sortase-mediated pilus assembly that may be applicable to many gram-positive pathogens.  相似文献   

16.
The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation.  相似文献   

17.
Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many gram-negative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.  相似文献   

18.
The type 4 pill of Pseudomonas aeruginosa are important cell-associated virulence factors that play a crucial role in mediating (i) bacterial adherence to, and colonization of, mucosal surfaces, (ii) a novel mode of fiagetia-independent surface translocation known as‘twitching motility, and (iii) the initial stages of the infection process for a number of bacteriophages. A new set of loci involved in pilus biogenesis and twitching motility was identified based on the ability of DNA sequences downstream of the pilG gene to complement the non-piliated (pil) strain, PAO6609. Sequence analysis of a 3.2 kb region directly downstream of pilG revealed the presence of three genes, which have been designated pilH, pill, and pilJ. The predicted translation product of the pilH gene (13 272 Da), like PilG, exhibits significant amino acid identity with the enteric single-domain response regulator CheY. The putative Pili protein (19933 Da) is 28% identical to the FrzA protein, a CheW homologue of the gliding bacterium Myxococcus xanthus, and the PMJ protein (72 523 Da) is 26% identical to the enteric methyl-accepting chemotaxis protein (MCP) Tsr. Mutants containing insertions in pill and pilJ were severely impaired in their ability to produce pili and did not translocate across solid surfaces. The pilH mutant remained capable of pilus production and twitching motility, but displayed an altered motility pattern characterized by the presence of many doughnut-shaped swirls. Each of these pil mutants, however, produced zones that were at least as large as the parent in flagellar-mediated swarm assays. The sequence similarities between the putative pilG, H, I and J gene products and several established chemotaxis proteins, therefore, lend strong support to the hypothesis that these proteins are part of a signal-transduction network that controls P. aeruginosa pilus biosynthesis and twitching motility.  相似文献   

19.
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.  相似文献   

20.
A Stern  P Nickel  T F Meyer  M So 《Cell》1984,37(2):447-456
In N. gonorrhoeae, the expression of pilus and opacity (Op) proteins can be switched on and off and a single cell apparently has a whole repertoire of genes to express many serologically distinguishable protein types. We describe the isolation of several different Op genes and of nonexpressing gene equivalents, all derived from isogenic gonococcal variants. In the E. coli host, Op proteins identical with those made in the respective N. gonorrhoeae strain are produced. The Op genes map near the pilus expression locus. Genomic blotting experiments with an Op gene probe reveal complex hybridization patterns but little heterogeneity among the genes of Op variants. It appears that colonial variation involving the Op protein of N. gonorrhoeae is based on minor sequence alterations, in contrast to the pilus variation system, in which changes in the expression can be evoked by substantial genomic rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号