首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

2.
We have clearly demonstrated corticotropin-releasing hormone (CRH) immunoreactive cell bodies and nerve fibers in the human hypothalamus by immunocytochemistry using free-floating sections instead of paraffin-embedded sections. Human hypothalami were obtained at autopsy, fixed and cryostat-sectioned at 40 microns. Free-floating sections were immunostained with antibody to CRH using the Vector ABC system. Most of CRH immunoreactive nerve fibers from the paraventricular nucleus pass under the fornix, while some CRH immunoreactive nerve fibers pass beyond the fornix and some through the fornix. Then the CRH immunoreactive nerve fibers run downward, medially to the supraoptic nucleus and toward the pituitary stalk. This method of immunocytochemistry is a very sensitive and suitable means for immunocytochemical studies of neuropeptides in the human brain.  相似文献   

3.
Summary Pancreatic polypeptide (PP) is a candidate hormone of unknown physiological significance. It is produced by a population of endocrine cells in the pancreas. In the present study a PP-like peptide was found to occur in the mammalian and avian central and peripheral nervous systems. Immunoreactive nerve fibres and nerve cell bodies were widely distributed in the brain. Dense accumulations of nerve fibres occurred in the following areas: nucleus accumbens, interstitial nucleus of the stria terminalis, para- and periventricular hypothalamic nuclei, and medial preoptic area. In addition, nerve fibres were regularly seen in cortical areas. Immunoreactive perikarya were observed in the following regions: cortex, nucleus accumbens, neostriatum and septum. In the gut, immunoreactive nerve fibers were distributed in the myenteric plexus, in smooth muscle, around blood vessels, and in the core of the villi. Immunoreactive perikarya occurred in the submucosal and myenteric plexus, suggesting that PP immunoreactive nerves are intrinsic to the gut.In the species examined, the neuronal PP-like peptide could be demonstrated with an antiserum raised against avian PP, but not with those raised against bovine or human PP. Thus, neuronal PP is distinct from the PP that occurs in pancreatic endocrine cells.  相似文献   

4.
Summary Developmental changes of thyrotropin-releasing hormone (TRH)-immunoreactive structures in the brain of mallard embryos were studied by means of immunocytochemistry (PAP technique). The primary antibody was generated against synthetic TRH. Immunoreactive neurons were first detected in the hypothalamus of 14-day-old embryos. By day 20, increasing numbers of immunoreactive perikarya were observed in the paraventricular nucleus, anterior preoptic region and supraoptic region. Immunoreactive fiber projections were seen in the median eminence as early as embryonic day 20; they occurred also in some extrahypothalamic regions (lateral septum, accumbens nucleus). The number and staining intensity of the cell bodies increased up to hatching, and continued to increase during the first week after hatching.  相似文献   

5.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

6.
Summary By use of a specific antiserum against synthetic ovine corticotropin-releasing factor (CRF) in the peroxidase-antiperoxidase (PAP) immunocytochemical procedure (Vandesande and Dierickx 1976), CRF-like antigenic determinants were demonstrated in the central nervous system of a human fetus, the Wistar rat, the frog Rana ridibunda, and the American cockroach Periplaneta americana. The immunoreactive CRF-producing cells occur mainly in the nucleus paraventricularis of the rat, while in Rana ridibunda these cells occur in the nucleus praeopticus. Immunoreactive CRF-containing fibres were also visualized. Very clear CRF-immunoreactive products were observed in the brain as well as the corpora cardiaca (CC) and corpora allata (CA) of the cockroach Periplaneta americana. ACTH-immunoreactivity was also demonstrated in the brain-CC-CA complex of this insect. Double immunohistochemical staining (Vandesande 1983) also revealed that both the CRFand ACTH-like substances occur in different neurosecretory neurons and nerve fibres. These results suggest that the antigenic determinants of CRF are very similar in vertebrates and insects bespeaking their very long evolutionary history.  相似文献   

7.
The distribution of cells immunoreactive for the molluscan tetrapeptide FMRFamide in the brain and the pituitary of Eigenmannia was investigated immunohistochemically by the use of the peroxidase-antiperoxidase (PAP) technique and unlabelled antibodies. FMRFi neurons were located in the ganglion of the nervus terminalis at the rostroventral side of the bulbus olfactorius. FMRFi perikarya were also found in a dorsomedial diencephalic nucleus, in the nucleus ventromedialis, in some liquor-contacting neurons of the nucleus lateralis tuberis and of the nucleus recessus lateralis and posterior. The perikarya of the midbrain pre-pacemaker nucleus were only weakly immunoreactive for FMRFamide while large FMRFi neurons (T-cells) occurred in lamina VI of the torus semicircularis, in the brain stem, in dorsal and medial layers of the lobus lineae lateralis posterior (LLLp) and in the medullary electric organ pacemaker nucleus (pm). FMRFi fibers and nerve endings were found in the bulbus olfactorius, in medial areas of the telencephalon, and rather densely in the rostral diencephalon. Ventrocaudally to most of the hypothalamic nuclei the occurrence of immunoreactive fibres increased; many coursed to the pituitary through the pituitary stalk. FMRFi fibres also appeared in the deep layers of the tectum opticum, in the torus semicircularis, in the medial and lateral medulla and below the pacemaker nucleus. Wherever FMRFamide-immunoreactivity occurred fibres and nerve endings could be found in close contact with blood vessels.  相似文献   

8.
Summary The presence of prolactin (PRL)-like material is demonstrated in the brain of rats with the aid of anti-ovine PRL (oPRL) IgG as primary antibody in the unlabeled antibody-enzyme method. Immunoreactive deposits are visualized as an intraneuronal constituent with a widespread distribution in the hypothalamus and neural lobe of the pituitary. Dense networks of reactive nerve terminals derived from two prominent fibre tracts, a ventral (VHT) and a dorsal hypothalamo-neurohypophysial tract (DHT) are seen. The VHT is confined to the median eminence and pars oralis tuberis, the DHT to the pars caudalis tuberis. Both fibre tracts pass through the infundibular stalk into the neural lobe. The origin of the immunoreactive nerve terminals can be elucidated only to some extent. The VHT gives off beaded fibres entering the ependymal and glandular layer of the median eminence. Immunoreactive perikarya are observed in the supraoptic nucleus, the paraventricular nucleus, the anterior hypothalamic nucleus, the anterior commissural nucleus, the preoptic nucleus and the interstitial nucleus of the stria terminalis. A few of the immunoreactive perikarya are observed in close connection with brain vessels and the ependymal cells of the third ventricle. The results indicate that the anti-oPRL has a unique region specificity implying that only a segment of the mammalian PRL molecule is present in these nuclei of the brain. Fragments of PRL may function as neuromodulators or neurotransmitters in the rat brain.We are indebted to Dr. Mogens Hammer, Rigshospitalet, Copenhagen for the gift of Arg-VP and anti-VP, and to NIAMDD for the gift of ovine PRL, ratPRL, anti-rPRL, anti-hPRL and bovineSTH  相似文献   

9.
N Liao  H Vaudry  G Pelletier 《Peptides》1992,13(4):677-680
In order to investigate the possible involvement of corticotropin-releasing factor (CRF) and somatostatin (SRIF) on thyrotropin-releasing hormone (TRH) neuronal cell activity in the rat hypothalamic paraventricular nucleus, we have proceeded to the simultaneous localization of CRF or SRIF and TRH. For this purpose, we used a dual immunostaining procedure that employed antibodies to CRF and SRIF and peroxidase-labeled goat anti-rabbit IgG as a first sequence, and antibodies to a cryptic fragment (Phe178-Glu199) of pro-TRH (to label TRH neurons) and alkaline phosphatase-labeled goat anti-rabbit IgG as the second sequence. A rich innervation of the paraventricular nucleus by immunoreactive CRF and SRIF fibers was observed. A large number of CRF and SRIF nerve endings were seen intimate anatomic proximity and often appeared to surround TRH-containing cell bodies. These results strongly suggest that TRH neurons might be regulated by both CRF and SRIF. These interactions might be the neuroanatomical basis for the already observed inhibitory effects of CRF and SRIF on TRH release.  相似文献   

10.
An immunocytochemical technique with the use of three different antibodies raised against serotonin was applied to localize the immunoreactive neurons in the central nervous system of the crayfish, Pacifastacus leniusculus. Immunoreactive neurons were found in three optic ganglia (medulla externa, interna and terminalis). They appeared in three layers of the medulla externa and interna. The medulla terminalis displayed three prominent groups of immunoreactive perikarya and mainly marginal immunoreactive fibres. Immunoreactive areas of the brain comprised the protocerebral bridge, central body, paracentral lobes and two loci in the anterior portion of the protocerebrum, i.e., the terminal areas for immunoreactive fibres from the optic centres. The olfactory lobes showed a specific immunoreactive pattern. In addition, diffusely and sparsely distributed immunoreactive fibres were found throughout the brain. The immunoreactive neurons are largely localized in the same areas of the central nervous system as the catecholaminergic neurons although some distinct differences occur.  相似文献   

11.
Endozepines are a family of peptides capable of displacing benzodiazepines from their specific binding sites, to which belong the diazepam-binding inhibitor and the octadecaneuropeptide (ODN). This paper reports the distribution of ODN-related peptides, investigated for the first time by immunocytochemistry, in different brain and pituitary regions of the Atlantic hagfish, Myxine glutinosa. Immunoreactive ODN-like material was found in the telencephalon at the level of bundles of different olfactory nerve fibres. Moreover, at the level of the pallium, immunoreactive multipolar neurons were observed in the pars parvocellularis of the stratum griseum superficialis. Similar immunopositive nerve cell bodies were found in the nucleus medialis of the central prosencephalic complex. In the mesencephalon, few immunoreactive neurons lining and contacting the mesencephalic ventricle were detected; such nerve cells could be involved in the regulation of cerebrospinal fluid homeostasis. Dorsally in the mesencephalon, numerous ODN-containing cell bodies were present in the area praetectalis. The rhomboencephalon was immunostained only in the octavolateral area and in the nucleus motorius magnocellularis of the trigeminal nerve. Furthermore, ODN immunoreactivity was also present in the nerve cells of ganglia of the ophthalmic division of the trigeminal nerve complex. The immunocytochemical patterns described here in the brain of M. glutinosa suggest an involvement of ODN-like peptides as neuromodulators in sensory pathways, such as olfactory and visual. Finally, ODN-like substances were localized in discrete populations of adenohypophysial cells and in tanycytes lining the neurohypophyseal walls, suggesting for endozepines a paracrine and/or endocrine control of pituitary hormones release and a neurohormone role respectively. These results could give new insights into the chemioarchitecture of the brain of myxinoids.  相似文献   

12.
The anatomical distribution of neurons containing galanin has been studied in the central nervous system of the chicken by means of immunocytochemistry using antisera against rat galanin. Major populations of immunostained perikarya were detected in several brain areas. The majority of galanin-immunoreactive cell bodies was present in the hypothalamus and in the caudal brainstem. Extensive groups of labeled perikarya were found in the paraventricular, periventricular, dorsomedial and tuberal hypothalamic nuclei, and in the nucleus of the solitary tract in the medulla oblongata. In the telencephalon, immunoreactive perikarya were observed in the preoptic area, in the lateral septal nucleus and in the hippocampus. The mesencephalon contained only a few galanin-positive perikarya located in the interpeduncular nucleus. Immunoreactive nerve fibers of varying density were detected in all subdivisions of the brain. Dense accumulations of galanin-positive fibers were seen in the preoptic area, periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the central gray of the brainstem, and the dorsomedial caudal medulla. The distributional pattern of galanin-immunoreactive neurons suggests a possible involvement of a galanin-like peptide in several neuroregulatory mechanisms.  相似文献   

13.
Two series of experiments were performed to identify the inhibitory center of the melanotropes in the intermediate lobe of hypophysis of the toad, Bufo japonicus. First, developmental changes in the distribution of dopaminergic neurons were examined from hatching stage to postmetamorphosis using an antiserum against dopamine synthase (tyrosine hydroxylase, TH). In the postmetamorphic toads, TH-positive cell bodies were localized in three clusters. One was the preoptic recess organ (PRO) in the prechiasmatic area, the other two were the paraventricular organ (PVO) and infundibular nucleus (IN) in the postchiasmatic area. Each of them exhibited different ontogenetic changes. During larval development, TH-positive cell bodies were first detected in the PVO and IN at a premetamorphic stage. The number of immunoreactive cells increased rapidly in both loci as metamorphosis proceeded, although the two nuclei showed different growth profiles. By contrast, in the PRO, a very small number of immunoreactive cells were observed before the onset of the prometamorphic period. Although the number of immunoreactive neurons increased as metamorphosis progressed, early neurons were confined to the caudal area of the PRO (cPRO), the rostral area of the PRO (rPRO) being devoid of TH-positive cells. Immunoreactive TH neurons appeared in the rPRO for the first time at the end of meta-morphic climax. This timing coincided well with the development of TH-positive nerve endings in the pars intermedia (PI) and median eminence. In the second series of experiments, the embryonic primordium of the PRO was surgically extirpated from open neurulae to examine the effects of PRO-ectomy. In 75% of the operated animals, background adaptation was not observed, their dermal melanophores remained permanently dispersed even on the white background. Dopaminergic neurons in the rPRO and the immunoreactive nerve endings in the PI and median eminence were scarcely observed in these animals. It was concluded that the present data strongly support the hypothesis that rPRO is the center of white-background adaptation.  相似文献   

14.
The distribution of the neurosecretory hormones vasotocin, isotocin and melanin-concentrating hormone and the hypophysiotropic hormone corticotropin-releasing factor was studied in the hypothalamo-hypophyseal system of the white seabream (Diplodus sargus) using immunocytochemical techniques. Magnocellular and parvocellular perikarya immunoreactive for arginine-vasotocin and isotocin were present in the nucleus preopticus. Perikarya immunoreactive for arginine-vasotocin extended more caudally with respect to isotocin-immunoreactive perikarya. Parvocellular perikarya were located at rostroventral levels and magnocellular perikarya in the dorsocaudal portion of the nucleus. Arginine-vasotocin and isotocin did not coexist in the same neuron. Fibres immunoreactive for arginine-vasotocin and isotocin innervated all areas of neurohypophysis and terminate close to corticotropic and melanotropic cells. Perikarya immunoreactive for melanin-concentrating hormone and corticotropin-releasing factor were observed in the nucleus lateralis tuberis, with a few neurons in the nucleus periventricularis posterior. In addition, melanin-concentrating hormone immunoreactive perikarya were detected in the nucleus recessus lateralis. The preoptic nucleus did not show immunoreactivity for these antisera. Fibres showing melanin-concentrating hormone and corticotropin-releasing factor immunoreactivity ended close to the melanotropic and somatolactotrophic cells of the pars intermedia, and close to the corticotrophic cells of the rostral pars distalis.  相似文献   

15.
A novel pituitary protein called 7B2 was localized in rat pituitary and brain by immunocytochemistry (unlabeled antibody technique). Immunoreactive material was present in the secretory cells of anterior and intermediate lobes and in neural structures of the posterior lobe of the hypophysis. 7B2-immunoreactive neurons were evident within the hypothalamus in the supraoptic nucleus, paraventricular nucleus (magnocellular and parvocellular parts), and lateral hypothalamus. Immunoreactive nerve fibers were seen within the internal and external zone of the median eminence. Among extrahypothalamic regions, the substantia nigra, dorsal tegmental nucleus, cuneiform nucleus, dorsal parabrachial nucleus, spinal tract trigeminal nerve, interior olive, solitary nucleus, and layers I and II of the spinal cord contained 7B2-immunoreactive material. This anatomical distribution suggests a role for 7B2 in endocrine and autonomic functions.  相似文献   

16.
N S Krishna  N K Subhedar 《Peptides》1992,13(1):183-191
The anatomical distribution of FMRFamide-like immunoreactivity in the forebrain and pituitary of the catfish, Clarias batrachus, was investigated. Immunoreactive cells were observed in the ganglion cells of the nervus terminalis (NT) and in the medial olfactory tracts. In the preoptic area, FMRFamide-containing perikarya were restricted to the lateral preoptic area, paraventricular subdivision of the nucleus preopticus, nucleus suprachiasmaticus and nucleus preopticus periventricularis posterior. In the postoptic area, some cells of the nucleus postopticus lateralis and nucleus of the horizontal commissure showed moderate immunoreactivity. In the tuberal area, immunoreactivity was observed in few cells of the nucleus hypothalamicus ventralis and nucleus arcuatus hypothalamicus (NAH). Nucleus ventromedialis thalami was the only thalamic nucleus with FMRFamide immunoreactivity. Immunoreactive processes were traceable from the NT through the medial as well as lateral olfactory tracts into the telencephalon and the area ventralis telencephali pars supracommissuralis (Vs). Further caudally, the immunoreactive fibers could be traced into discrete areas, including habenular and posterior commissures, neurohypophysis and pituitary; isolated fibers were also observed in the pineal stalk. A loose network of immunoreactive processes was observed in the olfactory bulbs and the entire telencephalon, with higher densities in some areas, including Vs. A dense plexus of immunoreactive fibers was seen in the pre- and postoptic areas and around the paraventricular organ, while relatively few were observed in the thalamus. A high concentration of fiber terminals was found in the caudal tuberal area.  相似文献   

17.
Summary The distribution of gonadotropin-releasing hormone (GnRH) immunoreactivity was studied in the African catfish, Clarias gariepinus, by means of immunofluorescence and immunoperoxidase techniques. Immunoreactive neurons were found throughout the preoptic nucleus (NPO). However, only a portion of the secretory perikarya in the NPO showed a positive reaction by use of an anti-LHRH serum. Numerous immunoreactive fibres were found to enter the pituitary and to terminate in its proximal pars distalis, the site of concentration of the gonadotropic cells. Since GnRH is present in the brain and pituitary of the African catfish, the lack of spontaneous ovulation in captivity is apparently due to an insufficient release of GnRH.  相似文献   

18.
Furness  J. B.  Keast  J. R.  Pompolo  S.  Bornstein  J. C.  Costa  M.  Emson  P. C.  Lawson  D. E. M. 《Cell and tissue research》1988,252(1):79-87
Summary Immunoreactivity for vitamin D-dependent calcium-binding protein (CaBP) has been localized in nerve cell bodies and nerve fibres in the gastrointestinal tracts of guinea-pig, rat and man. CaBP immunoreactivity was found in a high proportion of nerve cell bodies of the myenteric plexus, particularly in the small intestine. It was also found in submucous neurons of the small and large intestines. Immunoreactive nerve fibres were numerous in the myenteric ganglia, and were also common in the submucous ganglia and in the intestinal mucosa. Immunoreactive fibres were rare in the circular and longitudinal muscle coats. In the myenteric ganglia of the guinea-pig small intestine the immunoreactivity is restricted to one class of nerve cell bodies, type-II neurons of Dogiel, which display calcium action potentials in their cell bodies. These neurons were also immunoreactive with antibodies to spot 35 protein, a calcium-binding protein from the cerebellum. From the distribution of their terminals and the electrophysiological properties of these neurons it is suggested they might be sensory neurons, or perhaps interneurons. The discovery of CaBP in restricted sub-groups of enteric neurons may provide an important key for the analysis of their functions.  相似文献   

19.
Neuroanatomy of morphine-modulating peptides   总被引:2,自引:0,他引:2  
Antisera against two mammalian peptides related to the molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-NH2 were used to locate immunoreactive neurons in the rat brain, nerve fibres and terminals in the spinal cord, sympathetic ganglion cells and adrenal chromaffin cells. Immunoreactivity for the newly characterised octa- and octadecapeptide was detected in nerve cell bodies in the hypothalamic area, including parts of the dorsomedial, periventricular and paraventricular nuclei, and in the nucleus tractus solitarii. Nerve terminals in the superficial laminae of the spinal cord were also immunoreactive for these peptides, while the sensory ganglia were nonreactive. Some principal ganglion cells in the superior cervical ganglia exhibited bright immunofluorescence for the peptides, and a few adrenal medullary cells were immunoreactive. The presence of these peptides in the substantia gelatinosa of the spinal cord suggests that they may be involved in sensory neurotransmission, especially in the mechanisms mediating pain. In the hypothalamo-hypophysial system these peptides may be involved in the regulation of hormonal systems. They may also act as co-transmitters in the sympathetic nervous system.  相似文献   

20.
The immunohistochemical technique for the vasopressin localisation shows the presence of this hormone in neurons of the rat supra-chiasmatic nucleus. Different experimental conditions induce modifications of the supra-chiasmatic vasopressin, and, in the same time, the storage of immunoreactive peptide in the fibres terminating in the external zone of the median eminence. However, the supra-chiasmatic, supraoptic and paraventricular changes are not obligatory similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号