首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity.
Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence.
In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.  相似文献   

2.
Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue2. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study3-8. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.  相似文献   

3.
The feeding behaviour of the land snails Achatina fulica was used for investigation of the effects of different doses of ethanol. The time from the beginning of food (carrot) exposure till the removal of the carrot from the needle was measured. Regression analysis revealed the opportunity of approximation with exponential mathematical model of feeding behaviour time progressive decrease during food exposure. 1% ethanol solution injected into cephalopedal sinus inhibited the feeding behaviour to a small extent whereas 5% and 10% ethanol led to the facilitation of this behaviour. The increase of ethanol concentration from 20% to 40% in injected solution enhanced the inhibitory effect. The feeding behaviour is proposed to be employed as a model for investigation of ethanol neuronal effects.  相似文献   

4.
Recently, the fruit fly Drosophila melanogaster has been introducedas a model system to study the molecular bases of a varietyof ethanol-induced behaviors. It became immediately apparentthat the behavioral changes elicited by acute ethanol exposureare remarkably similar in flies and mammals. Flies show signsof acute intoxication, which range from locomotor stimulationat low doses to complete sedation at higher doses and they developtolerance upon intermittent ethanol exposure. Genetic screensfor mutants with altered responsiveness to ethanol have beencarried out and a few of the disrupted genes have been identified.This analysis, while still in its early stages, has alreadyrevealed some surprising molecular parallels with mammals. Theavailability of powerful tools for genetic manipulation in Drosophila,together with the high degree of conservation at the genomiclevel, make Drosophila a promising model organism to study themechanism by which ethanol regulates behavior and the mechanismsunderlying the organism's adaptation to long-term ethanol exposure.  相似文献   

5.
Well-differentiated Reuber H35 rat hepatoma cells in culture maintain a variety of biochemical functions characteristic of hepatocytes [Deschatrette, J., and M. C. Weiss. 1974. Biochimie. 56: 1603-1611]. To demonstrate the suitability of this system as a model for exploring mechanisms of ethanol hepatotoxicity, the following were investigated: 1) ethanol metabolism in whole cells and cell extracts and 2) effects of ethanol exposure on cellular lipid content. Cultures of H35 cells exposed to 10 mm ethanol metabolized the ethanol at rates similar to those reported in rat liver. Under these conditions, soluble alcohol dehydrogenase activity accounted for greater than 87% of total ethanol metabolism. H35 cells exposed to 240 mm ethanol for 3 days contained four times more triacylglycerol and cholesteryl ester than control cells. Total phospholipid and unesterified cholesterol levels were unaffected by ethanol. Neutral lipid content of Chinese hamster ovary cells was unchanged after ethanol exposure. The increased triacylglycerol content of ethanol-treated H35 cells appeared to result from an accelerated rate of conversion of long chain fatty acids into triacylglycerol. Several lines of evidence indicated that alcohol dehydrogenase-mediated ethanol oxidation was critical in promoting increased triacylglycerol content of cultured cells. Since 240 mm ethanol blocked cellular proliferation, long term effects of ethanol were studied at a level of 10 mm, which allowed a nearly normal growth rate. After 7 weeks of continuous exposure, 10 mm ethanol-treated H35 cells contained five times more triacylglycerol than paired controls. The well-differentiated H35 cell appears to be an excellent in vitro model system for studying both short-term and long-term effects of ethanol on liver cells.-Polokoff, M. A., M. Iwahashi, and F. R. Simon. Ethanol treatment increases triacylglycerol and cholesteryl ester content of cultured hepatoma cells.  相似文献   

6.
Ebselen as protection against ethanol-induced toxicity in rat stomach.   总被引:1,自引:0,他引:1  
The mucosal protective effect of ebselen was examined in an ethanol-induced rat gastric lesion model. Examination of gastric tissue samples by light microscopy showed that i.g. exposure to 50% ethanol induced gastric injury, which was more prominent in female rats. Ethanol did not effect the gastric acid secretion examined by means of H(+)-K+ATPase, the increment of which might be harmful in the stomach. But ebselen with or without ethanol kept H(+)-K+ATPase below control levels. Gastric alcohol dehydrogenase (ADH) was mainly responsible for oxidation of ethanol in the stomach before it enters the bloodstream. I.g. ethanol exposure inhibited the ADH activity but ebselen eliminated the ethanol-induced inhibition of this enzyme. Therefore, ebselen exhibited a beneficial effect by increasing the gastric ethanol metabolism and by ameliorating the possible tissue toxicity of ethanol. Consistently, we also found that ebselen diminished the blood ethanol level. A gender difference in the blood ethanol levels existed following the same dose of ethanol but there was no difference in ADH activity. Histologically, mucosal injury following ebselen exposure together with ethanol was less severe compared with ethanol treatment alone. We concluded that the decrease in ethanol-induced mucosal injury following ebselen may have contributed to the inhibition of H(+)-K+ATPase and the activation of ADH by ebselen.  相似文献   

7.
Summary Evidence is presented that adaptation of yeast cells to ethanol results in a reduced loss of cell viability induced by exposure to that agent. In line with earlier work, an exponential model is shown to apply when the concentration of ethanol exceeds a critical value, beyond which cell growth cannot occur. Such an exponential model is consistent with the absolute theory of reaction rates. Adaptation of yeast cells to 7% w/v ethanol lowers the specific rate of cell death at various ethanol concentrations by a factor of some 40 fold compared to a non-adapted culture.  相似文献   

8.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect.  相似文献   

9.
Acute ethanol exposure represents an increased risk factor for morbidity and mortality associated with surgical or traumatic injury. Despite clinical observations suggesting that ethanol exposure before injury alters tissue repair processes, little direct evidence about the mechanism by which ethanol affects the wound healing process is available. In this study, excisional wounds from female BALB/c mice with or without circulating ethanol levels of 100 mg/dl were used to assess wound closure, angiogenesis, and collagen content. Ethanol exposure resulted in a significant but transient delay in wound closure at day 2 postwounding (28 +/- 4% vs. 17 +/- 1%). In addition, total collagen content was significantly reduced by up to 37% in wounds from ethanol-treated mice compared with controls. The most significant effect of ethanol exposure on wounds was on vascularity because angiogenesis was reduced by up to 61% in wounds from ethanol-treated mice. The reduction in vessel density occurred despite near-normal levels of proangiogenic factors VEGF and FGF-2, suggesting a direct effect of ethanol exposure on endothelial cell function. Further evidence for a direct effect was observed in an in vitro angiogenesis assay because the exposure of endothelial cells to ethanol reduced angiogenic responsiveness to just 8.33% of control in a cord-forming assay. These studies provide novel information regarding the effect of a single dose of ethanol on multiple parameters of the wound healing process in vivo and suggest a potential mechanism by which ethanol impairs healing after traumatic injury.  相似文献   

10.
11.
D K Sarkar  S Minami 《Life sciences》1990,47(9):PL31-PL36
To characterize the effect of ethanol on the hypothalamic beta-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of beta-endorphin (beta-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of beta-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of beta-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on beta-EP secretion for a longer time. The magnitude of the beta-EP response to 50 mM ethanol is similar to that of the beta-EP response to 56 mM of potassium. Ethanol-stimulated beta-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.  相似文献   

12.
The honeybee continues to be developed as a model species in many research areas, including studies related to the effects of alcohol. Here, we investigate whether workers display one of the key features of alcoholism, namely withdrawal symptoms. We show that workers fed for a prolonged time on food spiked with ethanol, after discontinuation of access to such food, exhibited a marked increase in the consumption of ethanol and a slight increase in mortality. We additionally show that withdrawal symptoms do not include an increase in appetitiveness of ethanol diluted in water. Our results demonstrate that workers can develop alcohol dependence, which might be especially important in the natural setting of repeated exposure to ethanol in floral nectar and for their potential as a model of alcohol addiction.  相似文献   

13.
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.  相似文献   

14.
Kwon JY  Hong M  Choi MS  Kang S  Duke K  Kim S  Lee S  Lee J 《Genomics》2004,83(4):600-614
The nematode shows responses to acute ethanol exposure that are similar to those observed in humans, mice, and Drosophila, namely hyperactivity followed by uncoordination and sedation. We used in this report the nematode Caenorhabditis elegans as a model system to identify and characterize the genes that are affected by ethanol exposure and to link those genes functionally into an ethanol-induced gene network. By analyzing the expression profiles of all C. elegans ORFs using microarrays, we identified 230 genes affected by ethanol. While the ethanol response of some of the identified genes was significant at early time points, that of the majority was at late time points, indicating that the genes in the latter case might represent the physiological consequence of the ethanol exposure. We further characterized the early response genes that may represent those involved directly in the ethanol response. These genes included many heat shock protein genes, indicating that high concentration of ethanol acts as a strong stress to the animal. Interestingly, we identified two non-heat-shock protein genes that were specifically responsive to ethanol. glr-2 was the only glutamate receptor gene to be induced by ethanol. T28C12.4, which encodes a protein with limited homology to human neuroligin, was also specific to ethanol stress. Finally, by analyzing the promoter regions of the early response genes, we identified a regulatory element, TCTGCGTCTCT, that was necessary for the expression of subsets of ethanol response genes.  相似文献   

15.
The effects of ethanol on neural function and development have been studied extensively, motivated in part by the addictive properties of alcohol and the neurodevelopmental deficits that arise in children with fetal alcohol spectrum disorder (FASD). Absent from this research area is a genetically tractable system to study the effects of early ethanol exposure on later neurodevelopmental and behavioral phenotypes. Here, we used embryos of the fruit fly, Drosophila melanogaster, as a model system to investigate the neuronal defects that arise after an early exposure to ethanol. We found several disruptions of neural development and morphology following a brief ethanol exposure during embryogenesis and subsequent changes in larval behavior. Altogether, this study establishes a new system to examine the effects of alcohol exposure in embryos and the potential to conduct large‐scale genetics screens to uncover novel factors that sensitize or protect neurons to the effects of alcohol.  相似文献   

16.
Hu JH  Jiang J  Ma YH  Yang N  Zhang MH  Wu M  Fei J  Guo LH 《Cell research》2003,13(5):361-368
It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT) mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times. After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germcells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flowcytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes ofepithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphologywas normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.  相似文献   

17.

Background

The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.

Methodology/Principal Findings

In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.

Conclusion

Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.  相似文献   

18.
Neuronal signaling systems and ethanol dependence   总被引:2,自引:0,他引:2  
In recent years there have been remarkable developments toward the understanding of the molecular and/or cellular changes in the neuronal second-messenger pathways during ethanol dependence. In general, it is believed that the cyclic adenosine 3′, 5′-monophosphate (cAMP) and the phosphoinositide (PI) signal-transduction pathways may be the intracellular targets that mediate the action of ethanol and ultimately contribute to the molecular events involved in the development of ethanol tolerance and dependence. Several laboratories have demonstrated that acute ethanol exposure increases, whereas protracted ethanol exposure decreases, agonist-stimulated adenylate cyclase activity in a variety of cell systems, including the rodent brain. Recent studies indicate that various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein kinase A [PKA], and cAMP-responsive element binding protein [CREB]) in the rodent brain are also modulated by chronic ethanol exposure. The PI signal-transduction cascade represents another important second-messenger system that is modulated by both acute and chronic ethanol exposure in a variety of cell systems. It has been shown that protracted ethanol exposure significantly decreases phospholipase C (PLC) activity in the cerebral cortex of mice and rats. The decreased PLC activity during chronic ethanol exposure may be caused by a decrease in the protein levels of the PLC-Β1 isozyme but not of PLC-δ1 or PLC-γ1 isozymes in the rat cerebral cortex. Protein kinase C (PKC), which is a key step in the Pi-signaling cascade, has been shown to be altered in a variety of cell systems by acute or chronic ethanol exposure. It appears from the literature that PKC plays an important role in the modulation of the function of various neurotransmitter receptors (e.g., γ-aminobutyrate type A [GABAa], N-methyl-D-aspartate [NMDA], serotonin2A [5-HT2a], and 5-HT2C, and muscarinic [m1] receptors) resulting from ethanol exposure. The findings described in this review article indicate that neuronal-signaling proteins represent a molecular locus for the action of ethanol and are possibly involved in the neuroadaptational mechanisms to protracted ethanol exposure. These findings support the notion that alterations in the cAMP and the PI-signaling cascades during chronic ethanol exposure could be the critical molecular events associated with the development of ethanol dependence.  相似文献   

19.
Gestational exposure to ethanol causes fetal alcohol syndrome, which is associated with cerebellar hypoplasia. Previous in vitro studies demonstrated ethanol-impaired neuronal survival with reduced signaling through the insulin receptor (IRbeta). We examined insulin signaling in an experimental rat model of chronic gestational exposure to ethanol in which the pups exhibited striking cerebellar hypoplasia with increased apoptosis. Immunoprecipitation and Western blot analyses detected reduced levels of tyrosyl-phosphorylated IRbeta, tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1), and p85-associated IRS-1 but no alterations in IRbeta, IRS-1, or p85 protein expression in cerebellar tissue from ethanol-exposed pups. In addition, ethanol exposure significantly reduced the levels of total phosphoinositol 3-kinase, Akt kinase, phospho-BAD (inactive), and glyceraldehyde-3-phosphate dehydrogenase and increased the levels of glycogen synthase kinase-3 activity, activated BAD, phosphatase and tensin homolog deleted in chromosome 10 (PTEN) protein, and PTEN phosphatase activity in cerebellar tissue. Cerebellar neurons isolated from ethanol-exposed pups had reduced levels of insulin-stimulated phosphoinositol 3-kinase and Akt kinase activities and reduced insulin inhibition of PTEN and glycogen synthase kinase-3 activity. The results demonstrate that cerebellar hypoplasia produced by chronic gestational exposure to ethanol is associated with impaired survival signaling through insulin-regulated pathways, including failure to suppress PTEN function.  相似文献   

20.

Background

Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported.

Principal Findings

The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP) marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl) promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area.

Conclusions

Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号