首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrillarin is one of the most studied nucleolar proteins. Its main functions are methylation and processing of pre-rRNA. Fibrillarin is a highly conserved protein; however, in the course of evolution from archaea to eukaryotes, it acquired an additional N-terminal glycine and arginine-rich (GAR) domain. In this review, we discuss the evolution of fibrillarin structure and its relation to the functions of the protein in prokaryotes and eukaryotes.  相似文献   

2.
Vertebrate nucleolin is an abundant RNA-binding protein in the dense fibrillar component of active nucleoli. Nucleolin is modular in composition. Its amino-terminal third contains alternating acidic and basic domains, its middle section contains four consensus RNA-binding domains (cRBDs), and its carboxy-terminus contains a distinctive glycine/arginine-rich (GAR) domain with several RGG motifs. The arginines within these motifs are asymmetrically dimethylated. Several laboratories have shown that the GAR domain is necessary but not sufficient for the efficient localization of nucleolin to nucleoli. We examined the distribution of endogenous fibrillarin, Nopp140, and B23 when full-length and DeltaGAR nucleolin were expressed exogenously as enhanced green fluorescent protein (EGFP)-tagged fusions. Only B23 redistributed when DeltaGAR-EGFP was expressed at moderate to high levels, suggesting an in vivo interaction between nucleolin and B23. Next we substituted all ten arginines within the GAR domain of Chinese hamster ovary (CHO) nucleolin with lysines to test the hypothesis that methylation of the carboxy GAR domain is necessary for the nucleolar association of nucleolin. The lysine-substituted mutant was not an in vitro substrate for the yeast protein methyltransferase, Hmt1p/Rmt1. It was, however, able to associate properly with interphase nucleoli and with interphase pre-nucleolar bodies upon recovery from hypotonic shock. We conclude, therefore, that although the GAR domain is necessary for the efficient localization of nucleolin to nucleoli, methylation of this domain is not required for proper nucleolar localization.  相似文献   

3.
The p53-binding protein 1 (53BP1) is rapidly recruited to sites of DNA double-strand breaks and forms characteristics nuclear foci, demonstrating its role in the early events of detection, signaling and repair of damaged DNA. 53BP1 contains a glycine arginine rich (GAR) motif of unknown function within its kinetochore binding domain. Herein, we show that the GAR motif of 53BP1 is arginine methylated by protein arginine methyltransferase 1 (PRMT1), the same methyltransferase that methylates MRE11. 53BP1 contains asymmetric dimethylarginines (aDMA) within cells, as detected with methylarginine-specific antibodies. Amino acid substitution of the arginines within the GAR motif of 53BP1 abrogated binding to single and double-stranded DNA, demonstrating that the GAR motif is required for DNA binding activity of 53BP1. Fibroblast cells treated with methylase inhibitors failed to relocalize 53BP1 to sites of DNA damage and formed few ?-H2AX foci, consistent with our previous data that MRE11 fails to relocalize to DNA damage sites in cells treated with methylase inhibitors. Our findings identify the GAR motif as a region required for 53BP1 DNA binding activity and is the site of methylation by PRMT1.  相似文献   

4.
Deletion or mutation of the SMN1 (survival of motor neurons) gene causes the common, fatal neuromuscular disease spinal muscular atrophy. The SMN protein is important in small nuclear ribonucleoprotein (snRNP) assembly and interacts with snRNP proteins via arginine/glycine-rich domains. Recently, SMN was also found to interact with core protein components of the two major families of small nucleolar RNPs, fibrillarin and GAR1, suggesting that SMN may also function in the assembly of small nucleolar RNPs. Here we present results that indicate that the interaction of SMN with GAR1 is mediated by the Tudor domain of SMN. Single point mutations within the Tudor domain, including a spinal muscular atrophy patient mutation, impair the interaction of SMN with GAR1. Furthermore, we find that either of the two arginine/glycine-rich domains of GAR1 can provide for interaction with SMN, but removal of both results in loss of the interaction. Finally, we have found that unlike the interaction of SMN with the Sm snRNP proteins, interaction with GAR1 and fibrillarin is not enhanced by arginine dimethylation. Our results argue against post-translational arginine dimethylation as a general requirement for SMN recognition of proteins bearing arginine/glycine-rich domains.  相似文献   

5.
Fibrillarin, a protein component of C/D box small nucleolar ribonucleoproteins (snoRNPs), directs 2'-O-methylation of rRNA and is also involved in other aspects of rRNA processing. A gene trap screen in embryonic stem (ES) cells resulted in an insertion mutation in the fibrillarin gene. This insertion generated a fusion protein that contained the N-terminal 132 amino acids of fibrillarin fused to a beta-galactosidase-neomycin phosphotransferase reporter. As a result, the N-terminal GAR domain was present in the fusion protein but the methyltransferase-like domain was missing. The ES cell line with the targeted fibrillarin allele was transmitted through the mouse germ line, creating heterozygous animals. Western blot analyses showed a reduction in fibrillarin protein levels in the heterozygous knockout animals. Animals homozygous for the mutation were inviable, and massive apoptosis was observed in early Fibrillarin(-/-) embryos, showing that fibrillarin is essential for development. Fibrillarin(+/-) live-born mice displayed no obvious growth defect, but heterozygous intercrosses revealed a reduced ratio of +/- to +/+ mice, showing that some of the Fibrillarin heterozygous embryos die in utero. Analyses of tissue samples and cultured embryonic fibroblasts showed no discernible alteration in pre-rRNA processing or the level of the U3 snoRNA. However, the level of the intron-encoded box C/D snoRNA U76 was clearly reduced. This suggests a high requirement for snoRNA synthesis during an early stage in development.  相似文献   

6.
Fibrillarin is one of the major nucleolar proteins and is involved in pre-rRNA maturation. Its three main regions are a glycine and arginine-rich (GAR) domain, an RNA-binding domain, and an alpha-helical region, which presumably has a methyltransferase activity. Yet the roles of these regions in nucleolus-specific localization of fibrillarin are still unclear. To elucidate this issue, a series of plasmids was constructed to express human fibrillarin mutants fused with the green fluorescent protein. Localization of the chimeric proteins was studied in interphase and mitotic HeLa cells after single transfection with the plasmids. Deletion or a mutation of any domain proved to alter the specific fibrillarin location coinciding with sites of pre-rRNA synthesis. The GAR domain and the first spacer together were sufficient for fibrillarin migration into the nucleolus. Fibrillarin mutants located within the interphase nucleolus did not differ in mitotic location from the wild-type fibrillarin.  相似文献   

7.
8.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   

9.
Fibrillarin is one of the major nucleolar proteins and is involved in pre-rRNA maturation. Its three main regions are a glycine and arginine-rich (GAR) domain, an RNA-binding domain, and an -helical region, which presumably has a methyltransferase activity. Yet the roles of these regions in nucleolus-specific localization of fibrillarin are still unclear. To elucidate this issue, a series of plasmids was constructed to express human fibrillarin mutants fused with the green fluorescent protein. Localization of the chimeric proteins was studied in interphase and mitotic HeLa cells after single transfection with the plasmids. Deletion or a mutation of any domain proved to alter the specific fibrillarin location coinciding with sites of pre-rRNA synthesis. The GAR domain and the first spacer together were sufficient for fibrillarin migration into the nucleolus. Fibrillarin mutants located within the interphase nucleolus did not differ in mitotic location from the wild-type fibrillarin.  相似文献   

10.
11.
A 2.6kb fragment of chromosomal DNA from the archaeon Methanosarcina mazeii was sequenced and analyzed, and it was found to contain coding regions for three proteins that were 321, 234, and 193 amino acids (aa) in length. Homologs of the 321-aa protein were found in all archaeal genomes examined, but not in eukaryotic or bacterial genomes, with one exception in the latter. The protein with 234aa (named PrpM) was most similar to the putative protein Prp31p from Methanobacterium thermoautotrophicum, while the 193-aa protein (named FibM) was identified as an archaeal fibrillarin homolog. Prp and fibrillarin proteins are involved in RNA processing in eukaryotes, but their functions in archaea are not yet understood. The M. mazeii PrpM was also similar to three proteins from Saccharomyces cerevisiae: Prp31p, Nop56p, and Nop58p. Prp31p is a pre-mRNA processing protein, while Nop56p and Nop58p are involved in rRNA processing and interact with fibrillarin. No homologs of either protein were found in bacteria. The archaeal fibrillarin was shorter than its eukaryotic counterpart because it lacked the N-terminal glycine-arginine-rich (GAR) domain, present in most eukaryal homologs. The archaeal prp and fibrillarin gene homologs were found adjacent to each other, whereas in eukarya these genes are on separate chromosomes. Sequence signatures typical of the eukaryal molecules were identified in the M. mazeii and the other archaeal molecules studied. The close proximity of the prp and fib genes raises the possibility of a Prp-fibrillarin interaction in archaea.  相似文献   

12.
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.  相似文献   

13.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

14.
GAR1 is a nucleolar protein which is associated with small nucleolar RNAs (snoRNAs) and which is required for pre-ribosomal RNA processing. In Saccharomyces cerevisiae, the GAR1 gene is essential for cell viability. We have cloned and sequenced the GAR1 gene from the distantly related yeast Schizosaccharomyces pombe. The SpGAR1 gene, which contains two small introns, codes for a 194 amino-acid protein of 20 kDa. A protein sequence comparison indicates that SpGAR1 is 65% identical to ScGAR1. Anti-ScGAR1 antibodies recognize SpGAR1, emphasizing the structural conservation of the protein. Immunostaining of S.pombe cells with these antibodies reveals that SpGAR1 is localized in the nucleolus, as is the case in S.cerevisiae. Moreover, SpGAR1 can substitute for GAR1 in S.cerevisiae, indicating that the two proteins are functionally equivalent. These results suggest a parallel evolutionary conservation of proteins and RNAs with which GAR1 interacts in mediating its pre-rRNA processing and viability functions. After fibrillarin, GAR1 is the second protein of the snoRNPs shown to have been conserved throughout evolution.  相似文献   

15.
The diploid germinal nucleus of the ciliated protozoan Tetrahymena thermophila is unusual among eukaryotes in that it encodes a single copy of the gene for rRNA allowing identification of cis-acting mutations in rDNA affecting rRNA structure, function, and processing. The generally conserved nucleolar protein fibrillarin has been characterized from a number of systems and is involved in pre-rRNA processing. We have demonstrated that Tetrahymena has fibrillarin and have analyzed the cDNA and the genomic DNA encoding this protein. The derived amino acid sequence of the N-terminal region of Tetrahymena fibrillarin shows little similarity with the generally highly conserved glycine/arginine-rich N-terminal domain of other eukaryotic fibrillarins. The remainder of the amino acid sequence of the molecule is more conserved. Polyclonal antibodies generated against the full-length Tetrahymena fibrillarin expressed in bacteria recognize a protein of M(r) approximately 32,000 in whole-cell or nucleolar preparations. Immunocytochemistry localizes fibrillarin to nucleoli in the somatic macronuclei of vegetative cells. Transformation experiments demonstrate that fibrillarin is an essential protein in Tetrahymena. The Tetrahymena fibrillarin is expressed but does not complement a NOP1 null mutation when transformed into the yeast Saccharomyces cerevisiae, indicating less functional conservation among fibrillarins than previously suggested.  相似文献   

16.
17.
Box C/D ribonucleoprotein (RNP) particles mediate O2′-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.  相似文献   

18.
Fibrillarin is a 34-kDa nucleolar protein associated with many of the small nucleolar ribonucleoprotein (snoRNP) particles and plays a role in ribosomal RNA processing. A subset of patients with the systemic autoimmune disease Scleroderma produce autoantibodies against fibrillarin and it is a genetically restricted target of murine mercury-induced autoimmunity. To aid in characterizing the antigenicity of fibrillarin, we have constructed two forms of mouse fibrillarin. The wild-type clone contains two cysteine residues that enable the protein to form an intramolecular disulfide bond, whereas the mutant clone contains alanine replacements which cannot form the disulfide bond. We have successfully expressed and purified both wild-type and mutant recombinant mouse fibrillarin using nickel-chelation chromatography. The combination of T7 promoter-driven expression vector pET28 and Escherichia coli strain JM109(DE3) induced at 25 degrees C yielded up to 19 mg of 94% pure recombinant protein per liter of culture. As the antigenicity of fibrillarin requires the full-length protein, the purification protocol was optimized for isolation of the full-length protein by the addition of N- and C-terminal T7 Tag and FLAG epitope sequences to the fibrillarin sequence. Anti-peptide antibodies were used in immunoblot to identify conditions favoring minimal proteolysis of recombinant protein. Both wild-type and mutant recombinant fibrillarin, purified under denaturing conditions and in the presence of 2-mercaptoethanol, were recognized by anti-fibrillarin antibodies from Scleroderma patients and exhibited structural similarities to eukaryotic and in vitro translated fibrillarin.  相似文献   

19.
Giardia lamblia, the ancient eukaryote does not have nucleolus but produces the fibrillarin protein that may be used for pre-rRNA processing. The nucleoli of eukaryotes contain complex population of small nucleolar RNAs, known as snoRNAs, several of which are required for rRNA processing. This report describes the full-length cloning of fibrillarin gene from Giardia lamblia, using RTPCR and the production of recombinant fibrillarin protein in Escherichia coli strain BL21 (DE3) as N-terminal His-tag protein. The condition for production of soluble protein was standardized. The expressed protein was purified by using Ni-chelation chromatography and used for functional studies. The small nuclear RNAs (snRNAs), RNA D, RNA J, and RNA H, containing box C, box D, and box C/D, respectively, of Giardia were also cloned by RTPCR. Antibody raised against the recombinant protein was used to identify the fibrillarin in giardial nuclear extract. The interaction of snRNAs with recombinant fibrillarin was followed using North-Western hybridization. Gel electrophoresis mobility shift assay demonstrated that bacterially expressed protein may participate in the in vitro interaction with RNA J, RNA H, and RNA D. Our results indicate that the recombinant fibrillarin by itself is able to bind and does not require the involvement of any other protein for this binding to the three snRNAs.  相似文献   

20.
Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-N(G)-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N(G)-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N(G)-monomethylarginine, not asymmetric ω-N(G),N(G)-dimethylarginine or symmetric ω-N(G),N(G')-dimethylarginine, under the conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号