首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is not well known how the formation of styrene by microorganisms can occur in foods. In this study, we described and characterized the production of styrene by a yeast isolated from chikuwa fish paste. The styrene was not detected in fresh and normal food products nor in the food package's plastic film. The food containing styrene contained cinnamic acid as an antimicrobial agent and spice, and it was contaminated by 5.4 x 10(6) CFU of a yeast per gram. On the basis of morphological and biochemical features, the yeast isolated was determined to be a strain of Pichia carsonii, now designated strain CHI. Strain CHI, which was able to grow on cinnamic acid, had the ability to form styrene from trans-cinnamic acid via trans-p-coumaric and caffeic acids. The MIC of trans-cinnamic acid against strain CHI was 230 micrograms/ml. Strain CHI thrived well at pH 5.0 and 26.0 degrees C and was tolerant to 20% NaCl. Styrene was subsequently produced in ground fish meat containing cinnamic acid into which strain CHI had been inoculated. The yeast was found to be an environmental contaminant in food processing plants of the chikuwa manufacturer.  相似文献   

2.
Streptomyces setonii strain 75Vi2 was grown at 45 degrees C in liquid media containing yeast extract and trans-cinnamic acid, p-coumaric acid, ferulic acid, or vanillin. Gas chromatography, thin-layer chromatography, and mass spectrometry showed that cinnamic acid was catabolized via benzaldehyde, benzoic acid, and catechol; p-coumaric acid was catabolized via p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and protocatechuic acid; ferulic acid was catabolized via vanillin, vanillic acid, and protocatechuic acid. When vanillin was used as the initial growth substrate, it was catabolized via vanillic acid, guaiacol, and catechol. The inducible ring-cleavage dioxygenases catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected with an oxygen electrode in cell-free extracts of cultures grown in media with aromatic growth substrates and yeast extract.  相似文献   

3.
微小杆菌(Exiguobacterium sp.)对肉桂酸降解行为   总被引:1,自引:0,他引:1  
【目的】为有效缓解自毒物质肉桂酸对西瓜等作物生长的危害,从宁夏中卫硒砂瓜连作土壤中分离筛选得到一株高效降解肉桂酸的菌株,研究其基本降解特性。【方法】分离筛选得到一株能有效利用肉桂酸生长的菌株,采用16S r RNA基因序列分析进行菌株鉴定,运用高效液相色谱法和西瓜幼苗生长毒性实验检测降解特性。【结果】从多年西瓜连作土壤中筛选得到一株高效降解肉桂酸的细菌R30,鉴定为Exiguobacterium sp.,其96 h内对肉桂酸的降解率可达99%以上,最适降解温度和p H分别为30°C、p H 7.0。除肉桂酸外,该菌也能够高效降解香豆酸、阿魏酸、苯甲酸等其他酚酸类物质,表现出一定的底物广谱性;检测96 h降解液对西瓜种子萌发直至幼苗生长阶段的影响表明,该菌株可有效缓解肉桂酸对西瓜幼苗的生长抑制作用。【结论】菌株R30在肉桂酸、香豆酸、阿魏酸、苯甲酸等酚酸类物质导致的农作物连作障碍治理领域具有潜在的开发应用价值。  相似文献   

4.
5.
The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Deltapad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors.  相似文献   

6.
利用微生物缓解苯丙烯酸对黄瓜生长的抑制   总被引:15,自引:0,他引:15  
黄瓜根系分泌的酚酸类物质特别是苯丙烯酸,它是引起黄瓜自毒作用的一种重要的化感物质,对黄瓜连作具有明显的抑制作用。从珠海市污水排放入海口处分离出一株放线菌CellulosimicrobiumcellusansHa8菌株,它具有分解苯丙烯酸、苯甲酸、对氨基苯甲酸和苯酚的能力。通过在水培溶液和盆栽土壤中添加外源苯丙烯酸模拟连作环境,研究菌株Ha8对连作障碍的缓解程度。水培实验证明施用107cfu/L菌株Ha8能够有效缓解苯丙烯酸(浓度分别为2μmol/L和10μmol/L)对水培黄瓜的抑制作用,表现为显著促进黄瓜茎和根系的生长,提高开花数、产量等。土培实验证明,Ha8(≥106cfu/g干有机肥)和有机肥(3mg/kg土壤)联合施用,能够有效缓解苯丙烯酸(100mg/kg土壤)对黄瓜生长的抑制作用,主要表现为促进黄瓜对营养的吸收、提高黄瓜的根系脱氢酶活力、促进黄瓜根系微生物活性、增加有益菌群等。  相似文献   

7.
Several yeasts were isolated from a drainage canal in a Japanese fish food processing factory. They were characterized by the decomposition of organic polymers such as proteins and reducing sugars, their growth in the wastewater, the decrease in total organic carbon (TOC), and taxonomy. Three strains of yeast dominated the sample: Debaryomyces occidentalis (P1), Trichosporon ovoides (P19), and a strain that could not be identified (S27). Strain P19 had the highest TOC-decreasing activity and was immobilized onto chitosan beads. The immobilized yeasts reduced the TOC from 1.2 × 103 to 3.0 × 102 mg of C/L per day in the fish cannery wastewater.  相似文献   

8.
l-Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Rhodotorula rubra has been used in the commercial manufacture of l-phenylalanine from trans-cinnamic acid. In this study, R. graminis PAL was investigated. Mutant strain GX6000 was isolated after ethyl methanesulfonate mutagenesis of wild-type R. graminis GX5007 by selecting for resistance to phenylpropiolic acid, an analog of trans-cinnamic acid. Mutant strain GX6000 produced inducible PAL at levels four- to fivefold higher than had wild-type R. graminis. Furthermore, this strain had several other physiological traits that make it more commercially useful than R. rubra. For example, during fermentation, the PAL half-life was three- to fivefold longer, PAL specific activity was six to seven times higher, and PAL synthesis was significantly less inhibited by temperatures above 30 degrees C. Induction of PAL in strain GX6000 appeared to be less tightly regulated; l-leucine acted synergistically with l-phenylalanine, the physiological inducer, to increase the PAL specific activity and titer to 165 U/g (dry weight) and 3,000 U/liter, respectively, a 40% increase over the effect of l-phenylalanine alone. Strain GX6000 PAL showed significantly greater stability in bioreactors for the synthesis of l-phenylalanine, a finding that is consistent with the stability properties observed during fermentation.  相似文献   

9.
The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Δpad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors.  相似文献   

10.
The ATPase inhibitor Dio-9 effectively suppressed a number of physiological processes in a wild-type strain of Saccharomyces cerevisiae, X2180-1A. Low levels of the antibiotic inhibited cell growth, amino acid transport, hydrogen ion efflux, and ATPase activity. In addition, Dio-9 acted as a permeabilizing agent for the yeast plasma membrane. A mutant yeast strain, XC24, was selected on the basis of its ability to grow on minimal medium containing 200 μg/ml of Dio-9. Strain XC24 had acquired a pH-conditional ability to resist the permeabilizing effects of Dio-9. In addition, amino acid transport and hydrogen ion pumping exhibited a reduced senstivity to Dio-9 at low pH in the mutant strain. Strain XC24 was also resistant to the permeabilizing effects of the basic polymers protamine and deacylated chitin.  相似文献   

11.
A toluene-degrading denitrifier, Azoarcus tolulyticus Tol-4, was one of eight similar strains isolated from three petroleum-contaminated aquifer sediments. When the strain was grown anaerobically on toluene, 68% of the carbon from toluene was found as CO2 and 30% was found as biomass. Strain Tol-4 had a doubling time of 4.3 h, a Vmax of 50 micromol x min-1 x g of protein-1, and a cellular yield of 49.6 g x mol of toluene-1. Benzoate appeared to be an intermediate, since F-benzoates accumulated from F-toluenes and [14C]benzoate was produced from [14C]toluene in the presence of excess benzoate. Two metabolites, E-phenylitaconic acid (1 to 2%) and benzylsuccinic acid (<1%), accumulated from anaerobic toluene metabolism. These same products were also produced when cells were grown on hydrocinnamic acid and trans-cinnamic acid but were not produced from benzylalcohol, benzaldehyde, benzoate, p-cresol, or their hydroxylated analogs. The evidence supports an anaerobic toluene degradation pathway involving an initial acetyl coenzyme A (acetyl-CoA) attack in strain Tol-4, as proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for another toluene-degrading denitrifier, strain T1. Our findings support a modification of the proposed pathway in which cinnamoyl-CoA follows the oxidation of hydrocinnamoyl-CoA, analogous to the presumed oxidation of benzylsuccinic acid to form E-phenylitaconic acid. Cinnamic acid was detected in Tol-4 cultures growing in the presence of toluene and [14C]acetate. We further propose a second acetyl-CoA addition to cinnamoyl-CoA as the source of benzylsuccinic acid and E-phenylitaconic acid. This pathway is supported by the finding that monofluoroacetate added to toluene-growing cultures resulted in a significant increase in production of benzylsuccinic acid and E-phenylitaconic acid and by the finding that [14C]benzylsuccinic acid was detected after incubation of cells with toluene, [14C]acetate, and cinnamic acid. Evidence for anaerobic toluene metabolism by methyl group oxidation was not found, since benzylsuccinic acid and E-phenylitaconic acid were not detected after incubation with benzylalcohol and benzaldehyde, nor were benzylalcohol and benzaldehyde detected even in 14C trapping experiments.  相似文献   

12.
A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism before ring fission. Strain IMPC transformed various cinnamic acids with substituent H, OH, CH(3) or OCH(3) in the para- and/or meta-position of the aromatic ring to the corresponding benzoic acids, indicating a specific selection. A beta-oxidation pathway was proposed for these transformations. Phylogenetic analysis of the 16S rRNA gene revealed that this isolate was a member of the genus Halomonas. Strain IMPC was closely related to Halomonas elongata ATCC 33173(T)and Halomonas eurihalina ATCC 49336(T).  相似文献   

13.
Summary Fermentative production of citric acid from methanol by an isolated yeast, Candida sp. Y-1, was investigated using a medium containing fluoroacetate, a potential inhibitor of aconitase. Culture conditions were optimized, and the results showed that efficient production of citric acid required several factors; (1) the optimum concentration of fluoroacetate, (2) an addition of yeast extract with corn steep liquor, (3) a low nitrogen source concentration, and (4) strictly aerobic conditions. We then isolated a fluoroacetate-resistant mutant strain MA92 with threefold higher citric acid productivity than the wild strain. This mutant strain had lower aconitase activity than the wild strain and produced 4.6 g/l citric acid from methanol after 4 days of culture. Offprint requests to: Y. Tani  相似文献   

14.
Cultures ofCryptococcus elinovii CBS 7051 grown at the expense of cinnamic acid as the sole source of carbon and energy partially converted this substrate into styrene. The latter is toxic and eventually kills the culture. Cell-free extracts of cultures grown on cinnamic acid produced styrene from cinnamate. Other basidiomycetous yeasts tested did not produce styrene from cinnamic acid.  相似文献   

15.
Mutants resistant to phenylalanine analogs (L-tyrosine, p-fluoro-D, L-phenylalanine (PFP) and trans-cinnamic acid) were isolated from a wild type strain of Rhodotorula glutinis A-97 by mutagenic treatment with gamma radiation and screened for phenylalanine ammonia lyase (PAL) production. One such mutant, gammaT11 (resistant to L-tyrosine), exhibited four times the PAL activity of the parent wild strain A-97. Mutant isolate gammaTFP5.6 which was selected as L-tyrosine and PFP resistant isolate, produced inducible PAL activity at levels 5.94-fold higher than the wild-type A-97 and 2.66-fold higher than its parent mutant isolate gammaT5 which was resistant to L-tyrosine. The mutant isolate gammaTC5d which was resistant to L-tyrosine and trans-cinnamic acid, exhibited 3.48 and 1.56-fold increase in PAL activity compared to the parent wild strain A-97 and its parent mutant isolate gammaT5, respectively. Different media have been examined for the induction of PAL.  相似文献   

16.
代谢工程改造野生耐酸酵母生产L-乳酸   总被引:1,自引:1,他引:1  
以选育低pH条件下高产L-乳酸的酵母菌为目的,从自然样品中筛选分离得到一株能在pH 2.5 (乳酸调节) 的培养基中生长且不利用乳酸的酵母 (初步鉴定为木兰假丝酵母Candida magnolia);进一步将来源于米根霉As3.819的乳酸脱氢酶编码基因 (ldhA) 插入含有G418抗性基因的酵母穿梭载体,构建了重组质粒pYX212-kanMX-ldhA,电转化入野生型C. magnolia中,筛选获得了一株具有产L-乳酸能力的重组菌株C. magnolia-2;通过发酵实验表明,该重组菌产L-乳酸的最  相似文献   

17.
A flocculent killer yeast, Saccharomyces cerevisiae strain H-1, which was selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentation test of beet molasses indicated that the ethanol productivity and sugar consumption were improved by strain M-9 compared to the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/l, and the concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-1 and strain W-9 at the end of fermentation of beet molasses.  相似文献   

18.
黄晶  袁丽红  孙镇 《微生物学报》2011,51(4):488-494
[目的]分离筛选具有脂解麻疯树油能力的脂肪酶产生菌株,为以麻疯树油为原料酶法生产生物柴油奠定基础.[方法]以麻疯树油为唯一碳源,从麻疯树种子粉末处理过的土壤中分离筛选出1株具有脂解疯树油能力的脂肪酶产生菌,考察该菌株及其脂肪酶对有机溶剂耐受性以及脂肪酶催化酯化和转酯反应的能力,并通过生理生化特征和16S rDNA序列分...  相似文献   

19.
Many strains of the hydrocabon-utilizing yeasts were isolated from various kinds of natural sources by accumulation culture.

Among those yeasts, two strains, S315YI and S131YI, which were identified with Candida tropilcais, assimilated hydrocarbons abundantly. As for type cultures, it was found that many strains of them could utilize hydrocarbons too, especially the strains which belonged to Genus Candida. However, as regards to the ability in utilizing hydrocarbons, no yeast from type culture collections utilized hydrocarbons better than the yeasts newly isolated from nature. Addition of the natural nutrients such as corn steep liquor to the cultural broth of Strain S315Y1 showed no effect on the production of yeast cells.

The yeast Strain S315Y1 assimilated the higher boiling points fraction of n-paraffins in comparison with the hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa S7B1, which had been reported by the authors. Ribonucleic acid contents of dried cells of the yeast Strain S315Y1 and S131Y1 were 5.3 and 4.4% respectively by Schmidt-Thannhauser-Schneider method.  相似文献   

20.
Rhodotorula minuta, a basidiomycete fungus, prefers neutral pH for growth and its growth inhibition by food preservatives such as benzoic acid and cinnamic acid has not been reported. Cinnamic acid at 1 g l–1 arrested the growth and decreased the respiration of Rhodotorula but did not kill the yeast. The inhibitory effect was stronger in a mutant strain, 5-286, deficient in the -ketoadipate pathway than in the wild, suggesting that -ketoadipate pathway functions to detoxify this acid by restoring the decreased respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号