首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new PLA2 Bj-V from Bothrops jararacussu (14039.49 Da determined by MALDI-TOF mass spectrometry) was isolated in only one chromatographic step by HPLC ion-exchange and its purity was confirmed by reverse phase. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWQFGQMIL KETGKIPFPY YGAYGCYCGW GGRGGKPKDG TDRCCYVHD...) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj V showed discrete sigmoidal enzymatic behavior, with maximal activity at pH 8.4 and 35-40 degrees C. Full PLA2 activity required Ca2+ (10 mM) and there was little catalytic activity in the presence of 1 mM Ca2+. The addition of Mn2+ or Mg2+ (10 mM) in the presence of low (1 mM) Ca2+ slightly increased the enzyme activity, whereas Zn2+ and Cu2+ (10 mM) diminished the activity. The substitution of Ca2+ for Mg2+ or Cu2+ also reduced the enzymatic activity. Bj V had PLA2 activity and produced cytotoxicity in murine C2C12 skeletal muscle myoblasts and myotubes. The isolation of these isoforms Bj-IV [1] and Bj-V (described herein) found in a fraction previously described as homogeneous shows us the importance of optimization in purification techniques in order to better understand their biological behavior.  相似文献   

2.
Phospholipase A(2) (PLA(2)) enzymes become activated by binding to biological membranes and hydrolyze phospholipids to free fatty acids and lyso-phospholipids, the precursors of inflammatory mediators. To understand the functional significance of amino acid residues at key positions, we have studied the effects of the substitution of Val(3) (membrane binding surface) and Phe(5) (substrate binding pocket) of human group IIA PLA(2) by tryptophan on the structure and function of the enzyme. Despite the close proximity of the sites of mutations, the V3W mutation results in substantial enhancement of the enzyme activity, whereas the F5W mutant demonstrates significantly suppressed activity. A structural analysis of all three proteins free in buffer and bound to membranes indicates that large differences in activities result from distinct conformational changes in PLA(2)s upon membrane binding. Although PLA(2) and the V3W mutant demonstrate a decrease in helical content and an increase in helix flexibility, the F5W mutant experiences partial distortion of the alpha-helical structure presumably resulting from the tendency of Trp(5) to insert into the membrane. Furthermore, whereas the PLA(2) and the V3W mutant bind to the membrane at similar and apparently productive-mode orientation, the F5W mutant binds to membranes with a distinctly different orientation. It is suggested that both the stimulatory effect of the V3W mutation and the inhibitory effect of the F5W mutation result from the high affinity of Trp for the membrane-water interface. Although Trp(3) at the membrane binding face of PLA(2) facilitates the proper membrane binding of the enzyme, Trp(5) in the internal substrate binding site causes partial unwinding of the N-terminal helix in order to interact with the membrane.  相似文献   

3.
We have isolated, from canine pancreatic juice, two 14-kDa proteins with secretin-releasing activity that had N-terminal sequence homology with canine pancreatic phospholipase A2 (PLA2). In this study we have obtained evidence that secretin-releasing activity is an intrinsic property of pancreatic PLA2. Porcine pancreatic PLA2 from Sigma or Boehringer Mannheim was fractionated into several peaks by reverse phase high performance liquid chromatography. They were tested for stimulation of secretin release from murine neuroendocrine intestinal tumor cell line STC-1 and secretin cells enriched mucosal cell preparations isolated from rat upper small intestine. Each enzyme preparation was found to contain several components of secretin-releasing activity. Each bioactive fraction was purified to homogeneity by rechromatography and then subjected to mass spectral analysis and assays of PLA2 and secretin-releasing activities. It was found that the fraction with highest enzymatic activity also had the highest secretin-releasing activity and the same Mr as porcine pancreatic PLA2. Moreover, it also had the same N-terminal amino acid sequence (up to 30 residues determined) as that of porcine pancreatic PLA2, suggesting that it was identical to the enzyme. Purified porcine pancreatic PLA2 also stimulated secretin release concentration-dependently from both STC-1 cells and a mucosal cell preparation enriched in secretin-containing endocrine cells isolated from rat duodenum. Abolishment of the enzymatic activity by pretreatment with bromophenacyl bromide did not affect its secretin-releasing activity. The stimulatory effect of purified pancreatic PLA2 on secretin secretion from STC-1 cells was inhibited by an L-type Ca2+ channel blocker, by down-regulation of protein kinase C or by pretreatment of the cell with pertussis toxin. It is concluded that porcine pancreatic PLA2 possesses an intrinsic secretin-releasing activity that was independent of its enzymatic activity. This action is pertussis toxin-sensitive and is in part dependent on Ca2+ influx through the L-type channel and activation of protein kinase C.  相似文献   

4.
In this work, we analyzed the structural changes of araujiain entrapped into alginate beads. Araujiain is an enzymatic preparation containing three known enzymatic fractions with each fraction individually presenting a similar catalytic performance. Fluorescence and infrared spectroscopy, thermal analysis and residual catalytic activity studies were carried out. A small red shift in the spectrum of araujiain was observed after the entrapment process. Changes in the polarity around the tryptophan (Trp) residues were associated with an enzyme conformational change. From the Fourier transform infrared spectroscopy (FTIR) analysis, it was demonstrated that interactions between the enzyme extract and Ca alginate caused different structural behavior in araujiain. According to the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) study, it was possible to conclude that a secondary structure with a high α-helical character was responsible for the highest activity of entrapped araujiain. Finally, from thermal analysis measurements, it was proved that entrapment of araujiain augments the thermal stability of both the enzyme extract and Ca alginate, indicating a possible interaction between enzyme extract and its support.  相似文献   

5.
Secretory phospholipases A2 (PLA2s) are small homologous proteins rich in disulphide bridges. These PLA2s have been classified into several groups based on the disulphide bond patterns found [Dennis, E. A. (1997) Trends Biochem. Sci. 22, 1-2]. To probe the effect of the various disulphide bond patterns on folding, stability and enzymatic properties, analogues of the secretory PLA2s were produced by protein engineering of porcine pancreatic PLA2. Refolding experiments indicate that small structural variations play an important role in the folding of newly made PLA2 analogues. Introduction of a C-terminal extension together with disulphide bridge 50-131 gives rise to an enzyme that displays full enzymatic activity having increased conformational stability. In contrast, introduction of a small insertion between positions 88 and 89 together with disulphide bridge 86-89 decreases the catalytic activity significantly, but does not change the stability. Both disulphide bridges 11-77 and 61-91 are important for the kinetic properties and stability of the enzyme. Disulphide bridge 11-77, but not 61-91, was found to be essential to resist tryptic breakdown of native porcine pancreatic PLA2.  相似文献   

6.
F Nagashima  S Tanase  Y Morino 《FEBS letters》1986,197(1-2):129-133
Reaction of N-bromosuccinimide with pig heart cytosolic aspartate aminotransferase led to loss of the enzymatic activity. Chemical analysis indicated the modification of two tryptophan residues. At a low ratio of N-bromosuccinimide to enzyme, oxidation of Trp 122 occurred without affecting the enzymatic activity. Increase in the ratio resulted in the oxidation of Trp 48 with a concomitant decrease in enzyme activity. The modified enzyme did not react with substrates and their analogs. Trp 48 is not within the active site but in the hinge region linking the large domain of the enzyme to the small domain that shows dynamic movement upon binding substrates. The present result suggests that oxidation of Trp 48 may impair the structural integrity of the interdomain interface.  相似文献   

7.
In the present study, three Taiwan cobra PLA(2) variants were prepared by adding an extra N-terminal Met, substituting Asn-1 by Met or deleting the N-terminal heptapeptide. Recombinant PLA(2) mutants were expressed in Escherichia coli (E. coli), and purified to homogeneity by reverse phase HPLC. Fluorescence measurement showed that the hydrophobic character of the catalytic site, the microenvironment of Trp residues and energy transfer from excited Trp to 8-anilinonaphthalene sulfonate (ANS) were affected by N-terminal mutations. An alteration in the structural flexibility of the active site was noted with the mutants lacking the N-terminal heptapeptide or with an extra N-terminal Met added as evidenced by the inability of the two variants to bind with Ba(2+). Moreover, modification of Lys residues and energy transfer within the protein-ANS complex revealed that the Ca(2+)-induced change in the global structure of PLA(2) was different from that in N-terminal variants. Together with the fact that an 'activation network' connects the N-terminus with the active site, our data suggest that mutagenesis on the N-terminal region affects directly the fine structure of the catalytic site, which subsequently transmits its influence in altering the structure outside the active site of PLA(2). Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Formylglycine-generating enzyme (FGE) catalyzes the oxidation of a specific cysteine residue in nascent sulfatase polypeptides to formylglycine (FGly). This FGly is part of the active site of all sulfatases and is required for their catalytic activity. Here we demonstrate that residues 34-68 constitute an N-terminal extension of the FGE catalytic core that is dispensable for in vitro enzymatic activity of FGE but is required for its in vivo activity in the endoplasmic reticulum (ER), i.e. for generation of FGly residues in nascent sulfatases. In addition, this extension is needed for the retention of FGE in the ER. Fusing a KDEL retention signal to the C terminus of FGE is sufficient to mediate retention of an N-terminally truncated FGE but not sufficient to restore its biological activity. Fusion of FGE residues 1-88 to secretory proteins resulted in ER retention of the fusion protein. Moreover, when fused to the paralog of FGE (pFGE), which itself lacks FGly-generating activity, the FGE extension (residues 34-88) of this hybrid construct led to partial restoration of the biological activity of co-expressed N-terminally truncated FGE. Within the FGE N-terminal extension cysteine 52 is critical for the biological activity. We postulate that this N-terminal region of FGE mediates the interaction with an ER component to be identified and that this interaction is required for both the generation of FGly residues in nascent sulfatase polypeptides and for retention of FGE in the ER.  相似文献   

9.
Venom toxins were isolated from Formosan cobra (Naja naja atra) by cation-exchange chromatography. Most toxin components could be obtained in relatively pure forms by single-step ion-exchange chromatography whereas an extra step of gel permeation was needed for the separation of phospholipase A2 (PLA2) from the major neurotoxic component, i.e. cobrotoxin. The newer near-IR FT-Raman analytical method has been applied to the characterization of PLA2 in their lyophilized forms. Structural analysis of PLA2 and correlation of Raman spectroscopic data with amino acid compositions were made. The results indicate that phospholipase A2 showed the Raman peak at 1659 cm-1 which is characteristic of the alpha-helical structure in this enzyme. It is also found that the relative Raman signal intensities of Tyr, Phe, Trp and Met residues in purified toxins correlate very well with the structural data obtained from amino acid analysis. The application of near-IR FT-Raman techniques in the detection of the microenvironments of the aromatic amino acids such as Tyr and Trp in the native toxins may prove useful in the investigation of the functional properties of various venom toxins.  相似文献   

10.
Phospholipase A(2) (PLA(2)) from the pyloric ceca of the starfish Asterina pectinifera showed high specific activity and characteristic substrate specificity, compared with commercially available PLA(2) from porcine pancreas. To investigate enzymatic properties of the starfish PLA(2) in further detail, we constructed a bacterial expression system for the enzyme. The starfish PLA(2) cDNA isolated previously (Kishimura et al., 2000b. cDNA cloning and sequencing of phospholipase A(2) from the pyloric ceca of the starfish Asterina pectinifera. Comp. Biochem. Physiol. 126B, 579-586) was inserted into the expression plasmid pET-16b and the PLA(2) protein was expressed in Escherichia coli BL21 (DE3) by induction with isopropyl-beta-D(-)-thiogalactopyranoside. The recombinant PLA(2) produced as inclusion bodies was dissociated with 8 M urea and 10 mM 2-mercaptoethanol and renatured by dialyzing against 10 mM Tris--HCl buffer (pH 8.0). Renatured PLA(2) was purified by subsequent column chromatographies on DEAE--cellulose (DE-52) and Sephadex G-50. Although an N-terminal Ser in the native starfish PLA(2) was replaced by an Ala in the recombinant PLA(2), the recombinant enzyme showed essentially the same properties as did the native PLA(2) with respect to specific activity, substrate specificity, optimum pH and temperature, and Ca(2+) requirement.  相似文献   

11.
This paper reports the biochemical and pharmacological characterization of a new myotoxic PLA(2) (EC 3.1.1.4) called PhTX-I, purified from Porthidium hyoprora venom by one step analytical chromatography reverse phase HPLC. The homogeneity of the PhTX-I fraction and its molecular mass were initially evaluated by SDS-PAGE and confirmed by MALDI-TOF spectrometry, indicating a molecular mass of 14.249Da and constituted of a single polipeptidic chain. Amino acid sequence was determined by "de novo sequencing," in tandem mass spectrometry, belonging to D49-PLA(2) enzyme class and exhibiting high identity (44-90%) with other myotoxics PLA(2) from snake venoms. The enzymatic investigation showed maximal activity at pH 8 and 35-45°C. This activity was dependent on Ca(2+), other cations (Mg(2+), Mn(2+), Cd(2+) and Zn(2+)) reduced notably the enzymatic activity, suggesting that the arrangement of the catalytic site presents an exclusive structure for Ca(2+). Ex vivo, whole venom and PhTX-I PLA(2) caused blockade of the neuromuscular transmission in young chick biventer cervicis preparations similar to other isolated snake venom toxins from the Bothrops genus. In vivo, both induced local myotoxicity and systemic interleukin-6 response upon intramuscular injection, additionally, induced moderate footpad edema. In vitro, both induced low cytotoxicity in skeletal muscle myoblasts, however PhTX-I PLA(2) was able to lyse myotubes.  相似文献   

12.
Catechol O-methyltransferase (COMT) plays an important role in the inactivation of biologically active and toxic catechols. This enzyme is genetically polymorphic with a wild type and a variant form. Numerous epidemiological studies have shown that the variant form is associated with an increased risk of developing estrogen-associated cancers and a wide spectrum of mental disorders. There are seven cysteine residues in human S-COMT, all of which exist as free thiols and are susceptible to electrophilic attack and/or oxidative damage leading to enzyme inactivation. Here, the seven cysteine residues were systematically replaced by alanine residues by means of site-directed mutagenesis. The native forms and cysteine/alanine mutants were assayed for enzymatic activity, thermal stability, methylation regioselectivity, and reactivity of cysteine residues to thiol reagent. Our data showed that although there is only one encoding base difference between these two COMT forms, this difference might induce structural changes in the local area surrounding some cysteine residues, which might further contribute to the different roles they might play in enzymatic activity, and to the different susceptibility to enzyme inactivation.  相似文献   

13.
Transglutaminase (TGase) enzymes catalyze the formation of covalent cross-links between protein-bound glutamines and lysines in a calcium-dependent manner, but the role of Ca(2+) ions remains unclear. The TGase 3 isoform is widely expressed and is important for epithelial barrier formation. It is a zymogen, requiring proteolysis for activity. We have solved the three-dimensional structures of the zymogen and the activated forms at 2.2 and 2.1 A resolution, respectively, and examined the role of Ca(2+) ions. The zymogen binds one ion tightly that cannot be exchanged. Upon proteolysis, the enzyme exothermally acquires two more Ca(2+) ions that activate the enzyme, are exchangeable and are functionally replaceable by other lanthanide trivalent cations. Binding of a Ca(2+) ion at one of these sites opens a channel which exposes the key Trp236 and Trp327 residues that control substrate access to the active site. Together, these biochemical and structural data reveal for the first time in a TGase enzyme that Ca(2+) ions induce structural changes which at least in part dictate activity and, moreover, may confer substrate specificity.  相似文献   

14.
Besides acting as an inhibitor, the propeptide of human cathepsin B exerts an important auxiliary function as a chaperone in promoting correct protein folding. To explore the ability of N-terminally truncated forms of procathepsin B to fold into enzymatically active proteins, we produced procathepsin B variants progressively lacking N-terminal structural elements in baculovirus-infected insect cells. N-terminal truncation of the propeptide by up to 22 amino acids did not impair the production of activable procathepsin B. Secreted forms lacking the first 20, 21, or 22 amino acids spontaneously generated mature cathepsin B through autocatalytic processing, demonstrating that the first alpha-helix (Asp11-Arg20) is necessary for efficient inhibition of the enzyme by its propeptide. In contrast, proenzymes lacking the N-terminal part including the first beta-sheet (Trp24-Ala26) of the propeptide or containing an amino acid mutation directly preceding this beta-sheet were no longer properly folded. This shows that interactions between Trp24 of the propeptide and Tyr183, Tyr188, and Phe180 of the mature enzyme are important for stabilization and essential for procathepsin B folding. Thus, proenzyme forms missing more than the N-terminal 22 amino acids of the propeptide (notably truncated cathepsin B produced by the mRNA splice variant lacking exons 2 and 3, resulting in a propeptide shortened by 34 amino acids) are devoid of proteolytic activity because they cannot fold correctly. Thus, any pathophysiological involvement of truncated cathepsin B must be ascribed to properties other than proteolysis.  相似文献   

15.
Specific transformations at the N-terminal region of phospholipase A2.   总被引:1,自引:0,他引:1  
A J Slotboom  G H de Haas 《Biochemistry》1975,14(25):5394-5399
Treatment of porcine pancreatic prophospholipase A2 with methyl acetimidate converted all lysine residues into epsilon-acetimidolysine residues. Enzymatically active epsilon-amidinated phospholipase A2 (AMPA) was obtained from the epsilon-amidinated zymogen by limited tryptic proteolysis cleaving the Arg7-Ala8 bond. AMPA was used to prepare des-Ala8-, des-(Ala8,Leu9)- and des-(ALa8),Leu9,Trp10)-AMP by successive Edman degradations, and des-(A la 8-Arg13)-AMPA by selective splitting of the Arg13-Ser14 bond by trypsin. Structural analogues of AMPA with different N-terminal amino acid residues, viz., D-Ala, beta-Ala, and Gly, have been prepared by reacting des-Ala8-AMPA with the corresponding N-t-Boc-N-hydroxysuccinimide esters of these amino acids. Similarly, the only Trp10 residue has been substituted for Phe by coupling of des-(Ala8-,Leu9,Trp10)-AMPA with N-t-Boc-L-Ala-L-Leu-L-Phe-N-hydroxysuccinimide ester. The feasibility of these substitutions has been proven unambiguously by the retroconversion of des-Ala8-AMPA and of [Ala7]AMPA into AMPA having identical enzymatic activity as the starting AMPA. The single Trp10 residue in native phospholipase A2 and its zymogen was specifically sulfenylated using 0-nitrophenyl-sulfenyl chloride. The homogenous proteins were kinetically analyzed using short-chain lecithins in the monomeric and micellar region. All modified AMPA analogues, except those in which two or more of the N-terminal amino acid residues are removed, show enzymatic activities toward monermic substrate comparable to that of AMPA, indicating that the active site region is still intact. Only [Gly8]-, [beta-Ala8]-, and [Ala8,Leu9,Phe10]AMPA exhibit a dramatic increase in enzymatic activity similar to that of AMPA upon passing the critical micellar concentration (cmc) of the substrate. From these results it can be concluded that the N-terminal region of the enzyme requires a very precise architecture in order to interact with lipid-water interfaces and consequently to display its full enzymatic activity.  相似文献   

16.
Fibrino(geno)lytic enzymes from snake venoms have been identified as high quality therapeutic agents for treatment of blood clots and strokes. They act on fibrinogen and fibrin, leading to defibrinogenation of blood, lysis of fibrin, and a consequent decrease in blood viscosity. In this work, a fibrinolytic enzyme (ussurenase) from China Agkistrodon blomhoffii Ussurensis snake venom, was purified to homogeneity, identified as a stable 23,367.8 Da monomeric protein, and was identified as a new kind of snake venom metalloproteinase. Ussurenase reacts optimally with fibrin clots at pH 7.5-8.3 and a temperature of 33-41 degrees C. Although many fibrinolytic enzymes are known to be zinc-dependent, measurements from inductively coupled plasma-atomic emission spectroscopy (ICP-AES) reveal that ussurenase is a Ca2+-containing protein with a molar ratio of 1:1 ([Ca2+]:[enzyme]). Ca2+ is crucial to the fibrin clot hydrolysis by ussurenase but also plays an important role in maintaining the structural integrity of the enzyme. The addition of Ca2+ to the apoenzyme induces a conformational change making the environments surrounding the Trp residues of the enzyme more hydrophobic. The presence of Ca2+ also increases the structural stability of ussurenase, so that higher concentrations of the denaturant guanidine hydrochloride are required to denature the native ussurenase compared to the apo-form. UV absorption and CD spectroscopy experiments show that Ca2+ increases the thermostability and changes the secondary structure of ussurenase. All these data suggest that Ca2+ is crucial for the correct folding and activity of ussurenase.  相似文献   

17.
The sensitivity of different phospholipase A2 (PLA2)-active fractions eluted from cation-exchange chromatography to para-bromophenacylbromide (pBPB), Ca2+-EGTA, DTT, heat, and H2SO4 indicates that human cultured retinal pigment epithelial (hRPE) cells probably contain two different intracellular PLA2 enzymes. Control experiments using "back-and-forth" thin-layer chromatography confirmed that, in our assay conditions, the generation of free fatty acids originated solely from PLA2 activity. Together with immunoblot experiments where no cross-reactivity was observed between the hRPE cytosolic PLA2 enzymes and several antisera directed against secretory PLA2s (sPLA2s) and cytosolic PLA2 (cPLA2), these findings suggest that intracellular hRPE PLA2s are different from well-known sPLA2s, cPLA2, and Ca2+-independent PLA2s. We also report an additional hRPE-PLA2 enzyme that is secreted and that exhibits sensitivity to pBPB, Ca2+-EGTA, DTT, heat, and H2SO4, which is characteristic of sPLA2 enzymes. This approximately 22-kDa PLA2 cross-reacted weakly with an antiserum directed against porcine pancreatic group I sPLA2 but strongly with an antiserum directed against N-terminal residues 1-14 of human synovial group II sPLA2, suggesting that this extracellular enzyme is a member of the sPLA2 class of enzymes. We thus conclude that there are three distinct PLA2 enzymes in cultured hRPE cells, including two novel intracellular PLA2s and a 22-kDa secreted sPLA2 enzyme.  相似文献   

18.
Piratoxins (PrTX) I and III are phospholipases A2 (PLA2s) or PLA2 homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA2, while PrTX-I is a Lys49 PLA2 homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities.  相似文献   

19.
The phospholipase A2 enzyme, acanthoxin, found in the venom of the common death adder (Acanthophis antarcticus) as with other snake PLA2 enzymes displays neurotoxic activity. It is unclear whether this neurotoxic activity particular to some snake PLA2 enzymes is a result of structural differences solely within the catalytic sites or at a distant location upon the molecules. We have predicted the three-dimensional structure of one of the two predominant isoforms of acanthoxin (A1) using comparative protein modeling techniques. Given the high degree of homology and the availability of a high quality crystallographic structure, notexin was used as a molecular template to construct an all atom model of acanthoxin. The model was made using the program MODELLER3 and then refined with X-PLOR. Comparison between the predicted structure of acanthoxin and several X-ray structures of toxic and nontoxic PLA2 enzymes has led to a testable two-step proposal of neurotoxic PLA2 activity; involving the favorable binding to acceptor molecules followed by enzymatic intrusion upon the target membrane. The electrostatic potentials across the molecular surfaces of toxic and nontoxic PLA2 enzymes were calculated (GRASP) and it was found that the toxic PLA2 enzymes possessed a charge distribution on the noncatalytic surface not identified in the nontoxic PLA2 enzymes. Thus we have identified residues potentially involved in the interaction of the PLA2 enzymes with their acceptor molecules. Furthermore, the proposed acceptor molecule recognition site is distant from the catalytic site which upon binding of the PLA2 to the acceptor molecule may enhance the enzymatic ability of the toxic PLA2 enzymes on particular cell types.  相似文献   

20.
Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits   总被引:15,自引:0,他引:15  
gamma-Glutamylcysteine synthetase (rat kidney; Mr approximately 104,000) is composed of 2 nonidentical subunits. In the present work, a procedure was developed for the reversible dissociation of the enzyme into its subunits (Mr = 73,000 and 27,700) under nondenaturing conditions. Students in which gel electrophoresis was used, in conjunction with an enzyme activity stain and elution and re-electrophoresis of protein bands, showed that the heavy subunit contains all of the structural requirements for enzymatic activity and also for feedback inhibition of the enzyme activity by glutathione. The light subunit, which may be formed from a precursor protein, has a significantly lower content of Trp, Phe, Tyr, Val, and Ala residues than the heavy subunit, while its content of Lys, His, Met, and Asx residues is higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号