首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were designed to test the hypothesis that the labeled products recovered from plant tissue incubated with [14C]GA12-7-aldehyde ([14C]GA12ald) would serve as appropriate [14C]markers for the recovery of naturally-occurring gibberellins (GAs). The [14C]GA12ald (about 200 millicuries per millimole) was synthesized from pumpkin endosperm using [4,5-14C]mevalonic acid. It was added to the adaxial surface of isolated pea cotyledons at 22 days after flowering. Products recovered after 0.5 and 4.0 hour incubations yielded four major peaks which were separated by high performance liquid chromatography (HPLC). These products were purified by multiple-column HPLC using on-line radioactivity detection. They were then added as [14C]markers to two unlabeled pea extracts. In general, preparative HPLC followed by further HPLC purification resulted in a single UV-absorbing peak co-eluting with each [14C]marker. These [14C] and UV-absorbing peaks were shown to contain GA53, GA44, GA20, GA19, and GA17 by GC-MS. The finding of GA53 is novel; all others have previously been found in pea. Endogenous GAs of pea were thus readily detected using [14C]GA12ald metabolites as [14C]markers to recover naturally occurring GAs suggesting that the method may be applicable in detecting naturally occurring GAs in other species.  相似文献   

2.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

3.
[3H]gibberellin A9 was applied to shoots or seed parts of G2 pea to produce radiolabeled metabolites. These were used as markers during purification for the recovery of endogenous GA9 and its naturally occurring metabolites. GA9 and its metabolites were purified by HPLC, derivatized and examined by GC-MS. Endogenous GA9, GA20, GA29 and GA51 were identified in pea shoots and seed coats. GA51-catabolite and GA29-catabolite were also detected in seed coats. GA70 was detected in seed coats following the application of 1 g of GA9. Applied [3H]GA9 was metabolized through both the 13-hydroxylation and 2-hydroxylation pathways. Labeled metabolites were tentatively identified on the basis of co-chromatography on HPLC with endogenous compounds identified by GC-MS. In shoots [3H]GA51 and [3H]GA51-catabolite were the predominant metabolites after 6 hrs, but by 24 hrs there was little of these metabolites remaining, while [3H]GA29-catabolite and an unidentified metabolite predominated. In seed coats [3H]GA51 was the initial product, later followed by [3H]GA51-catabolite and an unidentified metabolite (different from that in shoots), with lesser amounts of [3H]GA20, [3H]GA29 and [3H]GA29-catabolite. [3H]GA70 was a very minor product in both cases. [3H]GA9 was not metabolized by pea cotyledons.Edited by T.J. Gianfagna.Author for correspondence  相似文献   

4.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

5.
To interpret the metabolism of radiolabeled gibberellins A12-aldehyde and A12 in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity [14C]GA12 and [14C]GA12-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). [14C]GA12 was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the [14C]GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenous presence of GA53, GA44, GA19 and GA20 was demonstrated and their HPLC peak identity ascertained. The 14C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA53 to 4% in GA20. Calculated levels of GA20, GA19, GA44, and GA53 were 42, 8, 10, and 0.5 nanograms/gram, respectively.  相似文献   

6.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

7.
The level of gibberellin(GA)-like material in cotyledons of soybean (Glycine max L.) was highest at mid-pod fill—about 10 nanograms GA3 equivalents per gram fresh weight of tissue, assayed in the immersion dwarf rice bioassay. This amount is about 1000-fold less than levels in Pisum and Phaseolus seed, other legume species whose spectrum of endogenous gibberellins (GAs) is well known. The metabolism of [14C]-GA12-7-aldehyde (GA12ald)—the universal GA precursor—by intact, mid-pod-fill, soybean cotyledons and their cell-free extracts was investigated. In 4 hours, extracts converted GA12ald to two products—[14C]GA12 (42% yield) and [14C]GA15 (7%). Within 5 minutes, intact embryos converted GA12ald to [14C]GA12 and [14C]GA15 in 15% yield; 4 hour incubations afforded at least 22 products (96% total yield). The putative [14C]GA12 was identified as a product of [14C]GA12ald metabolism on the basis of co-chromatography with authentic GA12 on a series of reversed and normal phase high pressure liquid chromatography (HPLC) and thin-layer chromatography (TLC) systems, and by a dual feed of the putative [14C]GA12 and authentic [14C]GA12 to cotyledons of both peas and soybeans. The [14C]GA15 was identified as a metabolite of [14C]GA12ald by capillary gas chromatography (GC)-mass-spectrometry-selected ion monitoring, GC-radiocounting, HPLC, and TLC. By adding the [14C] metabolites of [14C]GA12ald to a different and larger extract (about 0.2 kg fresh weight of soybean reproductive tissue) and purifying endogenous substances co-chromatographing with these metabolites, at least two GA-like substances were obtained and one identified as GA7 by GC-mass spectrometry. Since [14C]GA9 was not found as a [14C]metabolite of [14C]GA12ald, soybean embryos might have a pathway for biosynthesis of active, C-19 gibberellins like that of the cucurbits; GA12ald → GA12 → GA15 → GA24 → GA36 → GA4 → GA7.  相似文献   

8.
Gibberellins (GAs) A17, A19, A20, A29, A44, 2OH-GA44 (tentative) and GA29-catabolite were identified in 21-day-old seeds of Pisum sativum cv. Alaska (tall). These GAs are qualitatively similar to those in the dwarf cultivar Progress No. 9 with the exception of GA19 which does not accumulate in Progress seeds. There was no evidence for the presence of 3-hydroxylated GAs in 21 day-old Alaska seeds. Dark-grown shoots of the cultivar Alaska contein GA1, GA8, GA20, GA29, GA8-catabolite and GA29-catabolite. Dark-grown shoots of the cultivar Progress No.9 contain GA8, GA20, GA29 and GA29-catabolite, and the presence of GA1 was strongly indicated. Quantitation using GAs labelled with stable isotope showed the level of GA1 in dark-grown shoots of the two cultivars to be almost identical, whilst the levels of GA20, GA29 and GA29-catabolite were significantly lower in Alaska than in Progress No. 9. The levels of these GAs in dark-grown shoots were 102- to 103-fold less than the levels in developing seeds. The 2-epimer of GA29 is present in dark-grown-shoot extracts of both cultivars and is not thought to be an artefact.Abbreviations cv cultivar - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatographymass spectrometry - HPLC high-pressure liquid chromatography - KRI Kovats retention index - MeTMSi methyl ester trimethylsilyl ether  相似文献   

9.
The biosynthetic steps from gibberellin A12-aldehyde (GA12-aldehyde) to C19-GAs were studied by means of a cell-free system from the embryos of immature Phaseolus vulgaris seeds. Stable-isotope-labeled GAs were used as substrates and the products were identified by gas chromatography-mass spectrometry. Gibberellin A12-aldehyde was converted to GA4 via non-hydroxylated intermediates and to GA1 via 13-hydroxylated intermediates. 13-Hydroxylation took place at the beginning of the pathway by the conversion of GA12-aldehyde to GA53-aldehyde. The conversion of GA20 to GA5 and GA6 was also shown but no 2-hydroxylating activity was found. Endogenous GAs from embryos and testas of 17-dold seeds were re-examined by gas chromatography-selected ion monitoring using stable-isotopelabeled GAs as internal standards. Gibberellins A9, A12, A15, A19, A23, A24, and A53 were identified for the first time in P. vulgaris, in addition to GA1, GA4, GA5, GA6, GA8, GA17, GA20, GA29, GA37, GA38 and GA44, which were previously known to occur in this species. The levels of all GAs, except the 2-hydroxylated ones, were greater in the embryos than in the testas. Conversely, the contents of GA8 and GA29, both 2-hydroxylated, were much higher in the testas than in the embryos.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - GC-SIM gas chromatography-selected ion monitoring - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - m/z ion of mass  相似文献   

10.
Valerie M. Sponsel 《Planta》1983,159(5):454-468
Gibberellin A20 (GA20), GA29 and GA29-catabolite were quantified in cotyledons, embryonic axes, and testas of Pisum sativum cv. Progress No. 9 throughout the final stages of seed maturation and during germination. Stable isotope-labelled GAs were used as internal standards in conjunction with combined gas chromatography-mass spectrometry. Gibberellin A20 and GA29 were mainly located in the cotyledons of maturing seeds, and GA29-catabolite was predominantly located in the testa. Stable isotope- and radio-labelled GA20 and GA29 were fed to both intact seeds developing in vivo, and to isolated seed parts cultured in vitro. The combined results of in-vivo and in-vitro feeds indicated that GA20 is metabolised to GA29 in the cotyledons, that GA29 is transported from the cotyledons to the testa, and that GA29 is metabolised to GA29-catabolite in the testa. Although the metabolism of GA20 in the cotyledons and of GA29 in the testa has been shown definitively, the mobility of GA29 has not yet been demonstrated directly. During seed desiccation and germination GA29-catabolite and products arising from it are transferred from the testa into the embryo. There is no evidence of a physiological function for GA29-catabolite in germination or early seedling growth. Use of a growth retardant indicates that seedling growth, but not germination, is dependent on de-novo GA biosynthesis.  相似文献   

11.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

12.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

13.
Gibberellin (GA) metabolism from GA12-aldehyde was studied in cell-free systems from 2-d-old germinating embryos of barley. [14C]- or [17-2H2]Gibberellins were used as substrates and all products were identified by combined gas chromatography-mass spectrometry. Stepwise analysis demonstrated the conversion of GA12-aldehyde via the 13-deoxy pathway to GA51 and via the 13-hydroxylation pathway to GA29, GA1 and GA8. In addition, GA3 was formed from GA20 via GA5. We conclude that the embryo is capable of producing gibberellins that can induce -amylase production in the aleurone layer. There was no evidence for 12- or 18-hydroxylation and GA4 was neither synthesised nor metabolised by the system. All metabolically obtained GAs, with the exception of GA3, were also found as endogenous components of the cell-free system in spite of ammonium-sulfate precipitation and desalting steps.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography We thank Mrs. G. Bodtke and Mrs. B. Schattenberg for preparing the barley embryos and the Deutsche Forschungsgemeinschaft for supporting this work.  相似文献   

14.
Twenty known gibberellins (GAs) have been identified by combined capillary gas chromatography-mass spectrometry in extracts from less than 10 g fresh weight of maturing seeds of the cucurbit Sechium edule Sw. The GAs are predominantly 3- and-or 13-hydroxylated. This is the first reported identification of non-conjugated 13-hydroxylated GAs in a cucurbit. Gibberellin A8 and gibberellin A8-catabolite are the major GAs in terms of quantity and are largely accumulated in the testa. The catabolites of 2-hydroxylated GAs are ,-unsaturated ketones which no longer possess of a -lactone. They were hitherto known only in legumes. The presence of GA8-catabolite as a major component of Sechium seeds indicates that the distribution of these GA-catabolites may be more widespread than previously envisaged. The localization of known GAs in maturing seeds of the legume Phaseolus coccineus L. was found to resemble closely that in Sechium. Gibberellin A8, a putative conjugate of GA8 and GA8-catabolite are accumulated in the testa. The localization in the testa of end-products of the GA-biosynthetic pathway, which was first observed in maturing seeds of Pisum sativum, and is now described in Phaseolus and Sechium, may be a general feature of seed development.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry  相似文献   

15.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

16.
Ingram TJ  Reid JB 《Plant physiology》1987,83(4):1048-1053
The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA12-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7α-hydroxykaurenoic acid and GA12-aldehyde in the na mutant. Feeds of ent-[3H]kaurenoic acid and [2H]GA12-aldehyde to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize [2H]GA12-aldehyde to a number of[2H]C19-GAs including GA1. However, there was no indication in na genotypes for the metabolism of ent-[3H]kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolised ent-[3H]kaurenoic acid to radioactive compounds that co-chromatographed with GA1, GA8, GA20, and GA29. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-[3H]kaurenoic acid were similar for both Na and na plants and contained ent-16α,17-dihydroxykaurenoic acid and ent-6α,7α,16β,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7α-hydroxylation.  相似文献   

17.
Tritium-labeled gibberellin A20 ([3H]GA20) was applied via the pedicel to immature pods and seeds of dwarf peas and three harvests were made at days 5, 10, and 23 (mature) after application. Of the five metabolites of [3H]GA20, the three in highest yield were GA29, an α,β-unsaturated ketone, and a compound (B), whose structure was only tentatively assigned. The metabolic sequence GA20 → GA29 → compound B → the ketone was indicated. The amount of [3H]GA29 in both seeds and pods was highest at day 5 and declined to its lowest level at maturity. The amount of the [3H]ketone in the seed increased with time to its highest level at maturity. It is suggested that compound B and the ketone represent the major pathway of catabolism of GA29, a 2β-hydroxylated GA of low biological activity, and that the ketone is not metabolized, or only slowly metabolized, during seed maturation.  相似文献   

18.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

19.
A previously unknown pathway for the biosynthesis of 12α-hydroxylated gibberellins was found in a cell-free system from Cucurbita maxima endosperm. The microsome fraction converts the gibberellin precursor GA12-aldehyde simultaneously to GA12 and 12α-hydroxy-GA12-aldehyde. The ratio of these products is pH-dependent: above pH 6.5, the production of GA12 is favoured, whilst below pH 6.5, 12α-hydroxy-GA12-aldehyde is the predominant product. 12α-Hydroxy-GA12-aldehyde is converted further by soluble enzymes to 12α-hydroxy-GA14, 12α-hydroxy-GA15, 12α-hydroxy-GA37 and several unidentified products. This conversion is optimal between pH 6.0 and 6.5 in contrast to the previously known conversion of GA12-aldehyde to GA43 by soluble enzymes, which is optimal at pH 7.5. GA58, a major 12α-hydroxylated endogenous constituent of C. maxima endosperm, was not obtained when 12α-hydroxy-GA12-aldehyde was used as a substrate, but it was obtained together with GA4 when GA9 was incubated with a preparation containing both microsomal and soluble enzymes.  相似文献   

20.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号