首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarizes recent findings from electron tomography about the three-dimensional shape of mitochondrial membranes and its possible influence on a range of mitochondrial functions. The inner membrane invaginations called cristae are pleomorphic, typically connected by narrow tubular junctions of variable length to the inner boundary membrane. This design may restrict intra-mitochondrial diffusion of metabolites such as ADP, and of soluble proteins such as cytochrome c. Tomographic images of a variety of mitochondria suggest that inner membrane topology reflects a balance between membrane fusion and fission. Proteins that can affect cristae morphology include tBid, which triggers cytochrome c release in apoptosis, and the dynamin-like protein Mgm1, involved in inter-mitochondrial membrane fusion. In frozen-hydrated rat-liver mitochondria, the space between the inner and outer membranes contains 10-15 nm particles that may represent macromolecular complexes involved in activities that span the two membranes.  相似文献   

2.
Mitochondria amplify activation of caspases during apoptosis by releasing cytochrome c and other cofactors. This is accompanied by fragmentation of the organelle and remodeling of the cristae. Here we provide evidence that Optic Atrophy 1 (OPA1), a profusion dynamin-related protein of the inner mitochondrial membrane mutated in dominant optic atrophy, protects from apoptosis by preventing cytochrome c release independently from mitochondrial fusion. OPA1 does not interfere with activation of the mitochondrial "gatekeepers" BAX and BAK, but it controls the shape of mitochondrial cristae, keeping their junctions tight during apoptosis. Tightness of cristae junctions correlates with oligomerization of two forms of OPA1, a soluble, intermembrane space and an integral inner membrane one. The proapoptotic BCL-2 family member BID, which widens cristae junctions, also disrupts OPA1 oligomers. Thus, OPA1 has genetically and molecularly distinct functions in mitochondrial fusion and in cristae remodeling during apoptosis.  相似文献   

3.
The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.  相似文献   

4.
In addition to their role in providing ATP for cellular functions via oxidative phosphorylation, mitochondria also play a critical role in initiating and/or regulating apoptosis through the release of proteins such as cytochrome c from intermembrane and intracristal compartments. The mechanism by which these proteins are able to cross the outer mitochondrial membrane has been a subject of controversy. This paper will review some recent results that demonstrate that inner mitochondrial membrane remodeling does occur during apoptosis in HeLa cells but does not appear to be a requirement for release of cytochrome c from intracristal compartments. Inner membrane remodeling does appear to be related to fragmentation of the mitochondrial matrix, and the form of the remodeling suggests a topological mechanism for inner membrane fission and fusion.  相似文献   

5.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   

6.
Zhang Y  Chan DC 《FEBS letters》2007,581(11):2168-2173
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.  相似文献   

7.
Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.  相似文献   

8.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

9.
In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.  相似文献   

10.
In recent years, mitochondria have been recognized as regulators of cell death via both apoptosis and necrosis in addition to their essential role for cell survival. Cellular dysfunctions induced by intra- or extracellular insults converge on mitochondria and induce a sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition. The mitochondrial permeability transition is caused by the opening of permeability transition pores (PTP) in the inner mitochondrial membrane with subsequent loss of ionic homeostasis, matrix swelling and outer membrane rupture. The detailed molecular mechanisms underlying the PTP-induced cellular dysfunction during cardiac pathology such as ischemia/reperfusion or post-infarction remodeling remain to be elucidated. However, a growing body of evidence supports the concept that pharmacological inhibition of the PTP is an effective and promising strategy for the protection of the heart against ischemia/reperfusion injury and for attenuation of the remodeling process which contributes to heart failure. This review summarizes and discusses current data on i) the structure and function of the PTP, ii) possible mechanisms and consequences of PTP opening and iii) the inhibition of PTP opening as a therapeutic approach for treatment of heart disease.  相似文献   

11.
Mitochondria are complex organelles with a highly dynamic distribution and internal organization. Here, we demonstrate that mitofilin, a previously identified mitochondrial protein of unknown function, controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. Down-regulation of mitofilin in HeLa cells by using specific small interfering RNA lead to decreased cellular proliferation and increased apoptosis, suggesting abnormal mitochondrial function. Although gross mitochondrial fission and fusion seemed normal, ultrastructural studies revealed disorganized mitochondrial inner membrane. Inner membranes failed to form tubular or vesicular cristae and showed as closely packed stacks of membrane sheets that fused intermittently, resulting in a complex maze of membranous network. Electron microscopic tomography estimated a substantial increase in inner:outer membrane ratio, whereas no cristae junctions were detected. In addition, mitochondria subsequently exhibited increased reactive oxygen species production and membrane potential. Although metabolic flux increased due to mitofilin deficiency, mitochondrial oxidative phosphorylation was not increased accordingly. We propose that mitofilin is a critical organizer of the mitochondrial cristae morphology and thus indispensable for normal mitochondrial function.  相似文献   

12.
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.  相似文献   

13.
Mitochondrial dynamics in the regulation of neuronal cell death   总被引:1,自引:0,他引:1  
Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.  相似文献   

14.
Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

15.
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.  相似文献   

16.
17.
Mitochondria are double-membrane enclosed eukaryotic organelles with a central role in numerous cellular functions. The ultrastructure of mitochondria varies considerably between tissues, organisms, and the physiological state of cells. Alterations and remodeling of inner membrane structures are evident in numerous human disorders and during apoptosis. The inner membrane is composed of two subcompartments, the cristae membrane and the inner boundary membrane. Recent advances in electron tomography led to the current view that these membrane domains are connected by rather small tubular structures, termed crista junctions. They have been proposed to regulate the dynamic distribution of proteins and lipids as well as of soluble metabolites between individual mitochondrial subcompartments. One example is the release of cytochrome c upon induction of apoptosis. However, only little is known on the molecular mechanisms mediating the formation and maintenance of cristae and crista junctions. Here we review the current knowledge of the factors that determine cristae morphology and how the latter is linked to mitochondrial function. Further, we formulate several theoretical models which could account for the de novo formation of cristae as well as their propagation from existing cristae.  相似文献   

18.
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of “mitochondria-shaping” proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.  相似文献   

19.
《Autophagy》2013,9(3):282-284
Mitoptosis was described as a sort of mitochondrial death program. It could be associated with both necrosis and apoptosis, although degenerating mitochondria are also found in autophagic vacuoles. It was demonstrated that several molecules might contribute to the remodeling and rearrangement of mitochondrial membranes, leading to mitochondria rupture and disruption. Here, we hypothesize that, at least in T cells, two main pathways of mitoptosis can occur: an inner membrane mitoptosis (IMM), in which only the internal matrix and cristae are lost while the external mitochondrial envelope remains unaltered, and an outer membrane mitoptosis (OMM) where only swollen internal cristae are detected as remnants. We suggest that the study of these processes could provide useful insights not only to the field of cell death but also to the study of the pathogenic mechanisms of mitochondria-associated human diseases.

Addendum to:

Death Receptor Ligation Triggers Membrane Scrambling Between Golgi and Mitochondria

S. Ouasti, P. Matarrese, R. Paddon, R. Khosravi-Far, M. Sorice, A. Tinari, W. Malorni, M. Degli Esposti

Cell Death Differ 2006; Epub ahead of print  相似文献   

20.
Smith DJ  Ng H  Kluck RM  Nagley P 《IUBMB life》2008,60(6):383-389
Mitochondria play a key role in death signaling. The intermembrane space of these organelles contains a number of proteins which promote cell death once they are redistributed to the cytosol. The formation of pores in the outer membrane of mitochondria defines a gateway through which the apoptogenic proteins pass during death signaling. Interactions between pro-apoptotic and pro-survival members of the Bcl-2 family of proteins are decisive in the initiation of pore opening. While the specific composition of the pore in molecular terms is still subject to debate and continuing investigation, it is recognized functionally as a passive channel which not only allows egress of proteins to cytosol but also entry in the reverse direction. A variety of constraints may restrict the release of proteins from the intermembrane space to the cytosol. These include trapping in the intercristal spaces formed by the convoluted invaginations of the inner membrane, binding of proteins to the inner membrane or to other soluble proteins of the intermembrane space, or insertion of proteins into the inner membrane. There is a corresponding variety of mechanisms that facilitate release of apoptogenic proteins from such entrapment. Morphological changes that expand the inner membrane enable proteins to be released from enclosure in intercristal spaces, allowing these proteins access to the mitochondrial gateway. Specific cases include cytochrome c molecules bound to inner membrane cardiolipin and released upon oxidation of that lipid component. Further, AIF that is embedded in the inner membrane is released by proteases (caspases or calpains), which enter from the cytosol once the outer membrane pore has opened. The facilitation (or restriction) of apoptogenic protein release through the mitochondrial gateway may provide new opportunities for regulating cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号