首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully bleached softwood kraft pulps were hydrolyzed with cellulase (1,4-(1,3:1,4)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) from Trichoderma reesei. Supra-molecular structural features of cellulose during enzymatic hydrolysis were examined by using CP/MAS 13C NMR spectra in combination with line-fitting analysis. Different types of cellulose allomorphs (cellulose I(alpha), cellulose I(beta), para-crystalline) and amorphous regions were hydrolyzed to a different extent by the enzyme used. Also observed was a rapid initial phase for hydrolysis of regions followed by a slow hydrolysis phase. Cellulose I(alpha), para-crystalline, and non-crystalline regions of cellulose are more susceptible to enzymatic hydrolysis than cellulose I(beta) during the initial phase. After the initial phase, all the regions are then similarly susceptible to enzymatic hydrolysis.  相似文献   

2.
The aim of the paper is to investigate the structure of solutions of microcrystalline cellulose in NaOH/water mixtures and to determine the limit of cellulose solubility. The binary NaOH/water and the ternary cellulose/NaOH/water phase diagrams in the area of cellulose dissolution (7-10% NaOH below 0 degrees C) are studied by DSC. The NaOH/water binary phase diagram has a simple eutectic behavior. Because of the existence of this eutectic structure, it is possible to measure the influence of the addition of pure low molar mass microcrystalline cellulose. This shows that a minimum of four NaOH molecules should be linked to one anhydroglucose unit to allow for the dissolution of microcrystalline cellulose. The proportions between bound Avicel, NaOH, and water molecules as a function of cellulose concentrations are calculated. A tentative explanation about the origin of the dissolving power of NaOH/water is given.  相似文献   

3.
Cellulose whiskers are increasingly being used as a reinforcing phase in polymer systems and their use is a growing area of importance in bionanocomposite research. Although the reinforcing effect of cellulose whiskers has been studied in various polymers, the impact of crosslinking cellulose whiskers has not been explored so far. This work deals with the development of novel cellulose nanocomposites, wherein the cellulose nanowhiskers are crosslinked with poly(methyl vinyl ether-co-maleic acid) and poly(ethylene glycol). The morphology of the nanocomposite was studied using atomic force microscopy (AFM), which revealed a network structure embedded in a continuous phase. The water sorption studies demonstrated that the crosslinked nanocomposites are capable of absorbing up to ~900% water and have potential to be used as hydrogels.  相似文献   

4.
Song H  Niu Y  Wang Z  Zhang J 《Biomacromolecules》2011,12(4):1087-1096
Liquid crystalline (LC) phase transition and gel-sol transition in the solutions of microcrystalline cellulose (MCC) and ionic liquid (1-ethyl-3-methylimidazolium acetate, EMIMAc) have been investigated through a combination of polarized optical microscope (POM) observation and rheological measurements. Molecular LC phase forms at the 10 wt % cellulose concentration, as observed by POM, whereas the critical gel point is 12.5 wt % by rheological measurements according to the Winter and Chambon theory, for which the loss tangent, tan δ, shows frequency independence. Dramatic decreases of G' and G' in the phase transition temperature range during temperature sweep are observed due to disassembling of the LC domain junctions. The phase diagram describing the LC phase and gel-sol transitions is obtained and the associated mechanisms are elucidated. A significant feature shown in the phase diagram is the presence of a narrow lyotropic LC solution region, which potentially has a great importance for the cellulose fiber wet spinning.  相似文献   

5.
The cellulose-binding protein A (CBPA) of Eubacterium cellulosolvens 5 is a modular enzyme comprised of a catalytic domain, a cellulose-binding domain and a cell wall-binding domain. Cellobiose-grown cells changed their adhesion ability to cellulose depending on the growth phase. On the other hand, carboxymethyl cellulose (CMC)-grown cells bound to cellulose regardless of their growth phase. The distribution of CBPA in the culture supernatant and cell fractions changed depending on the carbon source contained in the medium and growth phase. The cellobiose-grown cells harvested from the culture of the late stationary growth phase did not bind to cellulose, but their adhesion ability was recovered by treatment with recombinant CBPA. Moreover, cellobiose-grown cells harvested from the culture of an early exponential growth phase bound to cellulose, but their adhesion ability was inhibited by treatment with anti-CBPA antiserum. CBPA rapidly decreased the viscosity of CMC, indicating that CBPA was endoglucanase. The results obtained in this study indicate that CBPA plays an important role in the adhesion of E. cellulosolvens 5 cells to cellulose.  相似文献   

6.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    7.
    FT-IR and X-ray analyses were employed to determine the relative ratio of cellulose Ialpha and Ibeta crystalline phases present in each developmental stage of coniferous tracheid cell wall formation. The IR spectra showed that initially the Ialpha phase occupies 50% of the crystalline regions in the primary cell wall cellulose and this value drops to 20% after ceasing of the cell enlarging growth for the formation of the secondary wall cellulose (the remaining regions are composed of the Ibeta phase). Although it is reasonable that the content for Ibeta, which is stress-reduced crystalline form, was higher in the secondary wall formation (Kataoka Y, and Kondo T. Macromolecules 1996;29:6356 6358) it is more interesting that during the crystallization of stress-induced Ialpha cellulose for the primary wall the stress-reduced Ibeta, is also possible to be crystallized in an alternative way. This means that throughout the period the Ialpha-causing stress may not be necessarily kept loaded. In light of our previously reported hypothesis (Kataoka Y. and Kondo T. Macromolecules 1998;31:760-764) for the formation of Ialpha phase due to cellular growing stresses in the primary wall cellulose, such an alternating on-off stress effect to account for the occurrence of both Ialpha and Ibeta phases might be related to a biological growth system in coniferous wood cells.  相似文献   

    8.
    The partitioning of endo-beta-glucanase, exo-beta-glucanase, and beta-glucosidase from Trichoderma reesei QM 9414 in aqueous two-phase systems has been studied with the object of designing a phase system for continuous bioconversion of cellulose. The partitioning of the enzymes in two-phase systems composed of various water soluble polymeric compounds were studied. Systems based on dextran and polyethylene glycol (PEG) were optimal for one-sidedly partitioning the enzymes to the bottom phase. The influence of polymer molecular weights, polymer concentration, ionic composition of the medium, pH, temperature, and adsorption of the enzymes to cellulose on the enzyme partition coefficients (K) were studied. By combining the effects of polymer molecular weight and adsorption to cellulose, K values could be reduced for endo-beta-glucanase to 0.02 and for beta-glucosidase to 0.005 at 20 degrees C in a phase system of Dextran 40-PEG 40000 in the presence of excess cellulose, At 50 degrees C, K values were increased by a factor of two. In a phase system based on inexpensive crude dextran and PEG, the partition coefficient for endo-beta-glucanase was 0.16 and for beta-glucosidase was 0.14 at 20 degrees C with excess cellulose present.  相似文献   

    9.
    The possibility to cultivate Lactococcus lactis in aqueous polymer two-phase system has been investigated. The phase system was made up of poly(ethylene imine) and (hydroxyethyl) cellulose. Long lag phases were needed for the microorganism to adapt to the polymer rich media. Cells favoured the (hydroxyethyl)cellulose rich top phase or they accumulated at the interface, while lactic acid showed affinity for the poly(ethylene imine) rich phase.Abbreviations PEG poly(ethylene glycol) - PEI poly(ethylene imine) - HEC (hydroxyethyl)cellulose  相似文献   

    10.
    Membranes of blends of polyaniline (PANi) and cellulose acetate (CA) produced from sugarcane bagasse with different degrees of substitution were produced and characterized using various techniques. Results showed that incorporation of PANi into the CA matrices leads to significant alterations of the blend morphologies, with phase separation, and that these differences are less significant for PANi/cellulose triacetate blends. The blends also showed a significant increase in electrical conductivity, with that of PANi/cellulose diacetate demonstrating an almost 200-fold increase.  相似文献   

    11.
    Cellulose triphenylcarbamate derivatives have been used as stationary phases for resolution of the enantiomers of the β-blockers propranolol and bupranolol by TLC. The derivatives examined were: cellulose trisphenylacarbamate (1), cellulose tris(2,3-dichlorophenyl carbamate) (2), cellulose tris(2,4-dichlorophenyl carbamate) (3), cellulose tris(2,6-dichlorophenyl carbamate) (4), cellulose tris (2,3-dimethylphenyl carbamate) (5), cellulose tris(3,4-dichlorophenyl carbamate) (6), cellulose tris(3,5-dichlorophenyl carbamate) (7), and cellulose tris(3,5-dimethylphenyl carbamate) (8). A variety of mobile phases were used to achieve useful separations and the effects of solvent polarity are also discussed. The best resolution of rac-propranolol was obtained on CSP 8 (RfR = 0.26, RfS = 0.06, α = 4.33) in mobile phase hexane:propan-2-ol (80:20 v/v). The best resolution of rac-bupranolol was obtained on CSP 5 (RfR = 0.29, RfS = 0.09, α = 3.22) in mobile phase hexane:propan-2-ol (80:20 v/v). These results demonstrated the potential of cellulose triphenylcarbamates as chiral stationary phases in TLC and indicate that this is potentially a useful method for the direct, simple, and rapid (within 30 min) resolution of racemates in the analytical control of enantiomeric purity. Physical aspects such as problems in cracking of the CSP, adhesion to plate, and interference of spot detection due to triphenylcarbamate chromphores are also discussed, along with the method employed to overcome them. Chirality 9:139–144, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    12.
    This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

    13.
    Analysis of the oxygen isotope ratio of tree-ring cellulose is a valuable tool that can be used as a paleoclimate proxy. Our ability to use this tool has gone through different phases. The first began in the 1970s with the demonstration of empirical relationships between the oxygen isotope ratio of tree-ring cellulose and climate. These empirical relationships, however, did not provide us with the confidence that they are robust through time, across taxa and across geographical locations. The second phase began with a rudimentary understanding of the physiological and biochemical mechanisms responsible for the oxygen isotope ratios of cellulose, which is necessary to increase the power of this tool. This phase culminated in a mechanistic tree-ring model integrating concepts of physiology and biochemistry in a whole-plant system. This model made several assumptions about leaf water isotopic enrichment and biochemistry which, in the nascent third phase, are now being challenged, with surprising results. These third-phase results suggest that, contrary to the model assumption, leaf temperature across a large latitudinal gradient is remarkably constant and does not follow ambient temperature. Recent findings also indicate that the biochemistry responsible for the incorporation of the cellulose oxygen isotopic signature is not as simple as has been assumed. Interestingly, the results of these challenges have strengthened the tree-ring model. There are several other assumptions that can be investigated which will improve the utility of the tree-ring model.  相似文献   

    14.
    This study attempted to prepare a single cellulose nanofiber, "nanocellulose", dispersed in water from 3D networks of nanofibers in microbial cellulose pellicle using aqueous counter collision (ACC), which allows biobased materials to be down-sized into nano-objects only using water jets without chemical modification. The nanocellulose thus prepared exhibited unique morphological properties. In particular, the width of the nanocellulose, which could be controlled as desired on nanoscales, was smaller than that of just secreted cellulose nanofiber, resulting in larger specific surface areas. Moreover, ACC treatment transformed cellulose I(α) crystalline phase into cellulose I(β) phase with the crystallinity kept >70%. In this way, ACC method depending on the treatment condition could provide the desired fiber width at the nanoscale and the different ratios of the two crystalline allomorphs between cellulose I(α) versus I(β), which thus opens further pathways into versatile applications as biodegradable single nanofibers.  相似文献   

    15.
    The effects of varying ionic liquid pretreatment parameters on various sources of lignocellulosic biomass have been studied using X-ray powder diffraction, X-ray fiber diffraction, and compositional analysis. Comparative enzymatic hydrolysis and sugar analysis were used to relate the observed changes in cellulose structure to biomass digestibility. In this study, the factor most clearly associated with enhanced biomass hydrolysis is the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase.  相似文献   

    16.
    In dark-grown hypocotyls of the Arabidopsis procuste mutant, a mutation in the CesA6 gene encoding a cellulose synthase reduces cellulose synthesis and severely inhibits elongation growth. Previous studies had left it uncertain why growth was inhibited, because cellulose synthesis was affected before, not during, the main phase of elongation. We characterised the quantity, structure and orientation of the cellulose remaining in the walls of affected cells. Solid-state NMR spectroscopy and infrared microscopy showed that the residual cellulose did not differ in structure from that of the wild type, but the cellulose content of the prc-1 cell walls was reduced by 28%. The total mass of cell-wall polymers per hypocotyl was reduced in prc-1 by about 20%. Therefore, the fourfold inhibition of elongation growth in prc-1 does not result from aberrant cellulose structure, nor from uniform reduction in the dimensions of the cell-wall network due to reduced cellulose or cell-wall mass. Cellulose orientation was quantified by two quantitative methods. First, the orientation of newly synthesised microfibrils was measured in field-emission scanning electron micrographs of the cytoplasmic face of the inner epidermal cell wall. The ordered transverse orientation of microfibrils at the inner face of the cell wall was severely disrupted in prc-1 hypocotyls, particularly in the early growth phase. Second, cellulose orientation distributions across the whole cell-wall thickness, measured by polarised infrared microscopy, were much broader. Analysis of the microfibril orientations according to the theory of composite materials showed that during the initial growth phase, their anisotropy at the plasma membrane was sufficient to explain the anisotropy of subsequent growth.  相似文献   

    17.
    The characteristics of the degradation of cellulose, soluble starch, and glucose in the acidogenic phase and the effects of the substrate loading rate and biological solids retention time on the methanogenic phase of anaerobic digestion were investigated. The results obtained from continuous experiments using laboratory-scale anaerobic chemostat reactors elucidated the true rate-limiting step of anaerobic digestion. The specific rate of substrate utilization decreased in the following order: glucose, soluble starch, acetic acid, and cellulose. The rate of the hydrolysis of cellulose was so low that this was shown to be the rate-limiting step in overall anaerobic digestion. Among methanogenic bacteria Methanosarcina would provide a higher substrate utilization rate than Methanothrix, and the maximum allowable substrate loading rate in the methanogenic phase was 11.2 g acetic acid/L day.  相似文献   

    18.
    Cellulases [see 1,4(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma reesei, Rutgers C30, can be semicontinuously produced in an aqueous two-phase system composed of dextran and poly(ethylene glycol) using Solka Floc BW 200 as substrate. When substrate was intermittently added along with fresh top phase, which replaced the withdrawn top phase containing the produced enzymes, a yield of 1740 U endo-β-d-glucanase/g cellulose and 59.3 FPU/g cellulose was extracted with the top phase. Without fresh substrate added, a yield of 3920 U endo-β-d-glucanase/g cellulose and 127.7 FPU/g cellulose was extracted after five runs.  相似文献   

    19.
    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase.  相似文献   

    20.
    Regenerated cellulose-silk fibroin blends fibers   总被引:1,自引:0,他引:1  
    Fibers made of cellulose and silk fibroin at different composition were wet spun from solutions by using N-methylmorpholine N-oxide hydrates (NMMO/H(2)O) as solvent and ethanol as coagulant. Different spinning conditions were used. The fibers were characterized by different techniques: FTIR-Raman, scanning electron microscopy, wide-angle x-ray diffraction, DSC analysis. The results evidence a phase separation in the whole blends compositions. The tensile characterization, however, illustrates that the properties of the blends fibers are higher respect to a linear behaviour between the pure polymers, confirming a good compatibility between cellulose and silk fibroin. The fibers containing 75% of cellulose show better mechanical properties than pure cellulose fibers: modulus of about 23 GPa and strength to break of 307 MPa.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号