共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience. 相似文献
2.
Joost te Riet Inge Reinieren‐Beeren Carl G. Figdor Alessandra Cambi 《Journal of molecular recognition : JMR》2015,28(11):687-698
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C‐type lectin dendritic cell‐specific intracellular cell adhesion molecule‐3 (ICAM‐3)‐grabbing non‐integrin (DC‐SIGN), because a detailed characterization at the structural level is lacking. DC‐SIGN recognizes specific Candida‐associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan‐branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope‐based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC‐SIGN. We demonstrate that slight differences in the N‐mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC‐SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kBT. The single‐bond affinity of tetrameric DC‐SIGN for wild‐type C. albicans is ~10.7 kBT and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate–protein interactions described in the literature. In conclusion, this study shows that DC‐SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC‐SIGN and its pathogenic ligands will lead to a better understanding of how fungal‐associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti‐fungal drugs. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star‐shaped topography 下载免费PDF全文
Jianfeng He Jiabin Wang Jun Hu Jielin Sun Daniel Mark Czajkowsky Zhifeng Shao 《Journal of molecular recognition : JMR》2016,29(4):174-181
Aerolysin is the paradigmatic member of a large family of toxins that convert from a water‐soluble monomer/dimer into a membrane‐spanning oligomeric pore. While there is x‐ray crystallographic data of its water‐soluble conformation, the most recent structural model of the membrane‐inserted pore is based primarily on data of water‐soluble tetradecamers of mutant protein, together with computational modeling ultimately performed in vacuum. Here we examine this pore model with atomic force microscopy (AFM) of membrane‐associated wild‐type complexes and all‐atom molecular dynamics (MD) simulations in water. In striking contrast to a disc‐shaped cap region predicted by the present model, the AFM images reveal a star‐shaped complex, with a central ring surrounded by seven radial projections. Further, the MD simulations suggest that the locations of the receptor‐binding (D1) domains in the present model are not correct. However, a modified model in which the D1 domains, rather than localized at fixed positions, adopt a wide range of configurations through fluctuations of an intervening linker is compatible with existing data. Thus our work not only demonstrates the importance of directly resolving such complexes in their native environment but also points to a dynamic receptor binding region, which may be critical for toxin assembly on the cell surface. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
《DNA Repair》2014
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair. 相似文献
5.
6.
Heymann JB Müller DJ Landau EM Rosenbusch JP Pebay-Peyroula E Büldt G Engel A 《Journal of structural biology》1999,128(3):243-249
The preponderance of structural data of the purple membrane from X-ray diffraction (XRD), electron crystallography (EC), and atomic force microscopy (AFM) allows us to ask questions about the structure of bacteriorhodopsin itself, as well as about the information derived from the different techniques. The transmembrane helices of bacteriorhodopsin are quite similar in both EC and XRD models. In contrast, the loops at the surfaces of the purple membrane show the highest variability between the atomic models, comparable to the height variance measured by AFM. The excellent agreement of the AFM topographs with the atomic models from XRD builds confidence in the results. Small technical difficulties in EC lead to poorer resolution of the loop structures, although the combination of atomic models with AFM surfaces allows clear interpretation of the extent and flexibility of the loop structures. While XRD remains the premier technique to determine very-high-resolution structures, EC offers a method to determine loop structures unhindered by three-dimensional crystal contacts, and AFM provides information about surface structures and their flexibility under physiological conditions. 相似文献
7.
The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo. 相似文献
8.
Correspondence of phases of electrogenesis, photocycle transitions, and proton transfer with the proton transporting groups of bacteriorhodopsin was studied. The structure of bacteriorhodopsin was considered by the file 1c3w and projections of sites of the proton movement pathway onto the normal to the purple membrane were measured. The dielectric permeability of the terminal site of the semichannel Schiff base external surface of the purple membrane was noticeably higher than in the center of the membrane.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1725–1728.Original Russian Text Copyright © 2004 by Khitrina, Ksenofontov. 相似文献
9.
Zapotoczny S Biedroń R Marcinkiewicz J Nowakowska M 《Journal of molecular recognition : JMR》2012,25(2):82-88
This report presents simple and reliable approach developed to study the specific recognition events between chlorinated ovalbumin (OVA) and macrophages using atomic force microscopy (AFM). Thanks to the elimination of nonspecific adhesion, the interactions of the native and chlorinated OVA with a membrane of macrophages could be quantified using exclusively the so-called adhesion frequency (AF). The proposed system not only enabled the application of AFM-based force measurements for such poorly defined ligand-receptor pairs but also significantly improved both the acquisition and the processing of the data. The proteins were immobilized on the gold-coated AFM tips from the aqueous solutions containing charged thiol adsorbates. Such surface dilution of the proteins ensured the presence of single or just a few macromolecules at the tip-surface contact. The formation of negatively charged monolayer on the tip dramatically limited its nonspecific interactions with the macrophage surface. In such systems, AF was used as a measure of the recognition events even if the interaction forces varied significantly for sets of measurements. The system with the native OVA, a weak immunogen, showed only negligible AF compared with 85% measured for the immunogenic chlorinated OVA. The AF values varied with the tip-macrophage contact time and loading velocity. Blocking of the receptors by the chlorinated OVA was also confirmed. The developed approach can be also used to study other ligand-receptor interactions in poorly defined biological systems with intrinsically broad distribution of the rupture forces, thus opening new fields for AFM-based recognition on molecular level. 相似文献
10.
The structure of a bacterial cell wall may alter during bacterial reproduction. Moreover, these cell wall variations, on a nanoscale resolution, have not yet fully been elucidated. In this work, Raman spectroscopy and atomic force microscopy (AFM) technique are applied to evaluate the culture time‐dependent cell wall structure variations of Pseudomonas putida KT2440 at a quorum and single cell level. The Raman spectra indicate that the appearance of DNA/RNA, protein, lipid, and carbohydrates occurs till 6 h of cultivation time under our experimental conditions. AFM characterization reveals the changes of the cellular surface ultrastructures over the culture time period, which is a gradual increase in surface roughness during the time between the first two and eight hours cultivation time. This work demonstrates the feasibility of utilizing a combined Raman spectroscopy and AFM technique to investigate the cultivation time dependence of bacterial cellular surface biopolymers at single cell level. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 171–177, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
11.
Frank W. S. Stetter Sandra Kienle Stefanie Krysiak Thorsten Hugel 《Journal of visualized experiments : JoVE》2015,(96)
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. 相似文献
12.
Force spectroscopy of the fibrin(ogen)-fibrinogen interaction 总被引:1,自引:0,他引:1
Fibrin aggregation is of vital importance in many physiological and pathological processes, such as blood coagulation, wound healing, and thrombosis. In the present study, we investigated the forces involved in the initial steps of the fibrinogen fibrin aggregation by force spectroscopy using the atomic force microscope. Our data confirm the existence of strong specific interactions between fibrin and fibrin(ogen), with unbinding forces ranging from 290 to 375 pN and a logarithmic dependence on the loading rate between 0.8 and 23 nN/s. 相似文献
13.
Ocellatin‐PT antimicrobial peptides: High‐resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems 下载免费PDF全文
Mayara Oliveira Ana Georgina Gomes‐Alves Carla Sousa Mariela Mirta Marani Alexandra Plácido Nuno Vale Cristina Delerue‐Matos Paula Gameiro Selma A. S. Kückelhaus Ana M. Tomas José Roberto S. A. Leite Peter Eaton 《Biopolymers》2016,105(12):873-886
Although the mechanism of action of antimicrobial peptides (AMPs) is not clear, they can interact electrostatically with the cell membranes of microorganisms. New ocellatin‐PT peptides were recently isolated from the skin secretion of Leptodactylus pustulatus. The secondary structure of these AMPs and their effect on Leishmania infantum cells, and on different lipid surface models was characterized in this work. The results showed that all ocellatin‐PT peptides have an α‐helix structure and five of them (PT3, PT4, PT6 to PT8) have leishmanicidal activity; PT1 and PT2 affected the cellular morphology of the parasites and showed greater affinity for leishmania and bacteria‐mimicking lipid membranes than for those of mammals. The results show selectivity of ocellatin‐PTs to the membranes of microorganisms and the applicability of biophysical methods to clarify the interaction of AMPs with cell membranes. 相似文献
14.
Valery Andrushchenko Zoya Leonenko David Cramb Hans van de Sande Hal Wieser 《Biopolymers》2002,61(4):243-260
The interaction of natural calf thymus DNA with Cr3+ ions was studied at room temperature by means of vibrational CD (VCD) and infrared absorption (ir) spectroscopy, and atomic force microscopy (AFM). Cr3+ ion binding mainly to N7 (G) and to phosphate groups was demonstrated. ψ‐Type VCD spectra resembling electronic CD (ECD) spectra, which appear during ψ‐type DNA condensation, were observed. These spectra are characterized mainly by an anomalous, severalfold increase of VCD intensity. Such anomalous VCD spectra were assigned to DNA condensation with formation of large and dense particles of a size comparable to the wavelength of the probing ir beam and possessing large‐scale helicity. Atomic force microscopy confirmed DNA condensation by Cr3+ ions and the formation of tight DNA particles responsible for the ψ‐type VCD spectra. Upon increasing the Cr3+ ion concentration the shape of the condensates changed from loose flower‐like structures to highly packed dense spheres. No DNA denaturation was seen even at the highest concentration of Cr3+ ions studied. The secondary structure of DNA remained in a B‐form before and after the condensation. VCD and ir as well as AFM proved to be an effective combination for investigating DNA condensation. In addition to the ability of VCD to determine DNA condensation, VCD and ir can in the same experiment provide unambiguous information about the secondary structure of DNA contained in the condensed particles. © 2002 Wiley Periodicals, Inc. Biopolymers 61: 243–260, 2002 相似文献
15.
Bert Conings Jeroen Drijkoningen Nicolas Gauquelin Aslihan Babayigit Jan D'Haen Lien D'Olieslaeger Anitha Ethirajan Jo Verbeeck Jean Manca Edoardo Mosconi Filippo De Angelis Hans‐Gerd Boyen 《Liver Transplantation》2015,5(15)
Organolead halide perovskites currently are the new front‐runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution‐based fabrication routes. Long‐term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability. 相似文献
16.
Ali Makky Pascal Viel Shu‐wen Wendy Chen Thomas Berthelot Jean‐Luc Pellequer Jérôme Polesel‐Maris 《Journal of molecular recognition : JMR》2013,26(11):521-531
Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self‐sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high‐resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self‐sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
Configurational entropy plays important roles in defining the thermodynamic stability as well as the folding/unfolding kinetics of proteins. Here we combine single-molecule atomic force microscopy and protein engineering techniques to directly examine the role of configurational entropy in the mechanical unfolding kinetics and mechanical stability of proteins. We used a small protein, GB1, as a model system and constructed four mutants that elongate loop 2 of GB1 by 2, 5, 24 and 46 flexible residues, respectively. These loop elongation mutants fold properly as determined by far-UV circular dichroism spectroscopy, suggesting that loop 2 is well tolerant of loop insertions without affecting GB1′s native structure. Our single-molecule atomic force microscopy results reveal that loop elongation decreases the mechanical stability of GB1 and accelerates the mechanical unfolding kinetics. These results can be explained by the loss of configurational entropy upon closing an unstructured flexible loop using classical polymer theory, highlighting the important role of loop regions in the mechanical unfolding of proteins. This study not only demonstrates a general approach to investigating the structural deformation of the loop regions in mechanical unfolding transition state, but also provides the foundation to use configurational entropy as an effective means to modulate the mechanical stability of proteins, which is of critical importance towards engineering artificial elastomeric proteins with tailored nanomechanical properties. 相似文献
18.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact
cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described.
The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin,
which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method
is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations.
Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and
the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the
spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes.
The changes are quantitatively described using the pixel height histogram and window size grain analysis. 相似文献
19.
A general and efficient cantilever functionalization technique for AFM molecular recognition studies
Atomic force microscopy (AFM) is a versatile technique for the investigation of noncovalent molecular associations between ligand–substrate pairs. Surface modification of silicon nitride AFM cantilevers is most commonly achieved using organic trialkoxysilanes. However, susceptibility of the Si? O bond to hydrolysis and formation of polymeric aggregates diminishes attractiveness of this method for AFM studies. Attachment techniques that facilitate immobilization of a wide variety of organic and biological molecules via the stable Si? C bond on silicon nitride cantilevers would be of great value to the field of molecular recognition force spectroscopy. Here, we report (1) the formation of stable, highly oriented monolayers on the tip of silicon nitride cantilevers and (2) demonstrate their utility in the investigation of noncovalent protein–ligand interactions using molecular recognition force spectroscopy. The monolayers are formed through hydrosilylation of hydrogen‐terminated silicon nitride AFM probes using a protected α‐amino‐ω‐alkene. This approach facilitates the subsequent conjugation of biomolecules. The resulting biomolecules are bound to the tip by a strong Si? C bond, completely uniform with regard to both epitope density and substrate orientation, and highly suitable for force microscopy studies. We show that this attachment technique can be used to measure the unbinding profiles of tip‐immobilized lactose and surface‐immobilized galectin‐3. Overall, the proposed technique is general, operationally simple, and can be expanded to anchor a wide variety of epitopes to a silicon nitride cantilever using a stable Si? C bond. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 761–765, 2012. 相似文献
20.
Using single-molecule force spectroscopy we characterized inter- and intramolecular interactions stabilizing structural segments of individual bacteriorhodopsin (BR) molecules assembled into trimers and dimers, and monomers. While the assembly of BR did not vary the location of these structural segments, their intrinsic stability could change up to 70% increasing from monomer to dimer to trimer. Since each stable structural segment established one unfolding barrier, we conclude that the locations of unfolding barriers were determined by intramolecular interactions but that their strengths were strongly influenced by intermolecular interactions. Subtracting the unfolding forces of the BR trimer from that of monomer allowed us to calculate the contribution of inter- and intramolecular interactions to the membrane protein stabilization. Statistical analyses showed that the unfolding pathways of differently assembled BR molecules did not differ in their appearance but in their population. This suggests that in our experiments the membrane protein assembly does not necessarily change the location of unfolding barriers within the protein, but certainly their strengths, and thus alters the probability of a protein to choose certain unfolding pathways. 相似文献