首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell Stem Cell》2021,28(8):1443-1456.e7
  1. Download : Download high-res image (272KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Ets variant gene 5 (ETV5) and glial cell-derived neurotrophic factor (GDNF) are produced in Sertoli cells and required for maintenance and self-renewal of spermatogonial stem cells (SSCs) in mice. Fibroblast growth factors (FGFs) have been reported to stimulate Etv5 mRNA expression, and FSH was shown to stimulate Gdnf mRNA in Sertoli cell cultures, but there is no other information on factors that regulate these key Sertoli cell proteins necessary for stem cell maintenance. In this study, we investigated regulation of ETV5 and GDNF using the TM4 murine Sertoli cell line. FGF2 stimulated a time- and dose-dependent increase in Etv5 mRNA expression, with a maximal 8.3-fold increase at 6 h following 25 ng/ml FGF2 treatment. This FGF2 dose also stimulated Gdnf mRNA at 48 h. FGF2 effects on Etv5 and Gdnf mRNA were partially mediated through mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K)-signaling cascades. Specific inhibitors of MAPK (PD98059) and PI3K (wortmannin) pathways reduced Etv5 and Gdnf mRNA expression in FGF2-treated cells. Epidermal growth factor (EGF) stimulated Etv5 mRNA but not Gdnf mRNA. TNFalpha and IL-1beta stimulated Gdnf mRNA, but had no effect on Etv5 mRNA. Other hormonal regulators of Sertoli cells such as testosterone, triiodothyronine and activin A did not affect Etv5 or Gdnf mRNA expression. Results with primary Sertoli cell cultures confirmed findings obtained with the TM4 cell line, validating the use of the TM4 model to examine regulation of Etv5 and Gdnf mRNA expression. In conclusion, we have identified common and unique pathways that regulate Etv5 and Gdnf mRNA in Sertoli cells, and FGFs are emerging as key regulators of the Sertoli cell proteins that control SSCs.  相似文献   

4.
5.
6.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

7.
The influence of the thymic hormone thymosin (fraction 5) on the hormonal function of testes form 2 months old BALB/c mice was investigated. It was shown that after 3 and 24 hours after thymosin administration there is a considerable decrease of plasma testosterone level as compared with the level of control animals, which were injected with BSA. 24 hours after administration of thymosin the in vitro production of testosterone by the testes was decreased essentially as compared with the control. Thymosin, injected together with indomethacin, inhibitor of prostaglandin synthesis, does not influence the hormonal activity of the testes. So, it was ascertained that thymic hormone thymosin participates in the regulation of the testes hormonal function. It is supposed that it's action on the gonads may be carried out through prostaglandins.  相似文献   

8.
Self-renewal and differentiation of spermatogonial stem cell (SSC) are critical for male fertility and reproduction, both of which are highly regulated by testicular microenvironment. Exosomal miRNAs have emerged as new components in intercellular communication. However, their roles in the differentiation of SSC remain unclear. Here, we observed miR-486-5p enriched in Sertoli cell and Sertoli cell-derived exosomes. The exosomes mediate the transfer of miR-486-5p from Sertoli cells to SSCs. Exosomes release miR-486-5p, thus up-regulate expression of Stra8 (stimulated by retinoic acid 8) and promote differentiation of SSC. And PTEN was identified as a target of miR-486-5p. Overexpression of miR-486-5p in SSCs down-regulates PTEN expression, which up-regulates the expression of STRA8 and SYCP3, promotes SSCs differentiation. In addition, blocking the exosome-mediated transfer of miR-486-5p inhibits differentiation of SSC. Our findings demonstrate that miR-486-5p acts as a communication molecule between Sertoli cells and SSCs in modulating differentiation of SSCs. This provides a new insight on molecular mechanisms that regulates SSC differentiation and a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

9.
10.
We previously showed that mammalian FSH stimulates the proliferation of newt spermatogonia and induces their differentiation into primary spermatocytes in vitro. In the current study, to examine a possibility that stem cell factor (SCF) is involved in the proliferation of newt spermatogonia and/or their differentiation into primary spermatocytes, human recombinant SCF (rhSCF) was added to organ culture of testicular fragments. rhSCF was found to stimulate the spermatogonial proliferation and the spermatogonia progressed to the seventh generation that is the penultimate stage before primary spermatocyte stage. However, the spermatogonia did not differentiate into primary spermatocytes, but instead died of apoptosis. These results indicate that rhSCF promotes the proliferation of newt spermatogonia, but not the initiation of meiosis.  相似文献   

11.
Platelet-derived growth factor (PDGF)- A-deficient male mice were found to develop progressive reduction of testicular size, Leydig cells loss, and spermatogenic arrest. In normal mice, the PDGF-A and PDGF-Ralpha expression pattern showed positive cells in the seminiferous epithelium and in interstitial mesenchymal cells, respectively. The testicular defects seen in PDGF-A-/- mice, combined with the normal developmental expression of PDGF-A and PDGF-Ralpha, indicate that through an epithelial-mesenchymal signaling, the PDGF-A gene is essential for the development of the Leydig cell lineage. These findings suggest that PDGF-A may play a role in the cascade of genes involved in male gonad differentiation. The Leydig cell loss and the spermatogenic impairment in the mutant mice are reminiscent of cases of testicular failure in man.  相似文献   

12.
13.
Tight regulation of stem cell proliferation is fundamental to tissue homeostasis, aging and tumor suppression. Although stem cells are characterized by their high potential to proliferate throughout the life of the organism, the mechanisms that regulate the cell cycle of stem cells remain poorly understood. Here, we show that the Cdc25 homolog String (Stg) is a crucial regulator of germline stem cells (GSCs) and cyst stem cells (CySCs) in Drosophila testis. Through knockdown and overexpression experiments, we show that Stg is required for stem cell maintenance and that a decline in its expression during aging is a critical determinant of age-associated decline in stem cell function. Furthermore, we show that restoration of Stg expression reverses the age-associated decline in stem cell function but leads to late-onset tumors. We propose that Stg/Cdc25 is a crucial regulator of stem cell function during tissue homeostasis and aging.  相似文献   

14.
Testicular heat shock was used to characterize cellular and molecular mechanisms involved in male fertility. This model is relevant because heat shock proteins (HSPs) are required for spermatogenesis and also protect cells from environmental hazards such as heat, radiation, and chemicals. Cellular and molecular methods were used to characterize effects of testicular heat shock (43 degrees C for 20 min) at different times posttreatment. Mating studies confirmed conclusions, based on histopathology, that spermatocytes are the most susceptible cell type. Apoptosis in spermatocytes was confirmed by TUNEL, and was temporally correlated with the expression of stress-inducible Hsp70-1 and Hsp70-3 proteins in spermatocytes. To further characterize gene expression networks associated with heat shock-induced effects, we used DNA microarrays to interrogate the expression of 2208 genes and thousands more expression sequence tags expressed in mouse testis. Of these genes, 27 were up-regulated and 151 were down-regulated after heat shock. Array data were concordant with the disruption of meiotic spermatogenesis, the heat-induced expression of HSPs, and an increase in apoptotic spermatocytes. Furthermore, array data indicated increased expression of four additional non-HSP stress response genes, and eight cell-adhesion, signaling, and signal-transduction genes. Decreased expression was recorded for 10 DNA repair and recombination genes; 9 protein synthesis, folding, and targeting genes; 9 cell cycle genes; 5 apoptosis genes; and 4 glutathione metabolism genes. Thus, the array data identify numerous candidate genes for further analysis in the heat-shocked testis model, and suggest multiple possible mechanisms for heat shock-induced infertility.  相似文献   

15.
16.
We have investigated the frequency of reciprocal translocations in the first differentiating spermatogonia entering the first meiotic division after 2 x 2.5 Gy X-rays, given 24 h apart, as well as the development of this parameter in later stem-cell generations by studying multivalent configurations at the first meiotic division. Diakinesis-metaphase I cells were found for the first time between 30 and 40 days after irradiation. Subsequently, meiotic stages were sampled at 120, 180 and 280 days post irradiation. From day 40 post irradiation on, half of the males were allowed to impregnate females which enabled us to estimate the length of the post-irradiation sterile period, the development of litter size and the possible effect of sexual activity on the development of reciprocal translocation-containing stem cells. Half of the males were karyologically normal, the other half were homozygous for a reciprocal translocation (T/T) that affects testis weight and about halves sperm production. Irrespective of male karyotype, the first meiocytes had an induced translocation frequency of 9.00 +/- 2.56% (n = 8 males), followed by frequencies of 20.70 +/- 4.87% (n = 15) at 180 days and 20.20 +/- 4.30% (n = 20) at 280 days (males with and without mating behavior showing no difference). At 120 days post irradiation, +/+ males had a frequency of 14.59 +/- 2.97% irrespective of sexual activity. T/T males (120 days post irradiation) that had mated showed a frequency of 18.63 +/- 0.85% (n = 4) compared with 13.64 +/- 2.36% (n = 7) for those that had not. The observed rise of multivalent-carrying spermatocytes in time was highly significant. Notwithstanding the differences in testis weight and epididymal sperm count between the karyotypes, fertile matings occurred on average 72 days after irradiation, though with relatively wide margins. For the T/T karyotype, the first litter was statistically smaller than the subsequent litters. At 78 days post irradiation, testis weights were back in the subnormal range for both karyotypes and hardly improved in time. Restoration of fertility thus coincided with the period just prior to the return to subnormal testis weights. The first diakinesis-metaphase I cells precede those that are numerous enough to accomplish 'return to fertility' by about 2 weeks. Thus differentiation of stem-cell spermatogonia already follows a few days after irradiation. A pattern of spermatogonial cell divisions compatible with 'return to fertility' is only established some 2 weeks later.  相似文献   

17.
Spermatongonial stem cells (SSCs) are unique testis cells that are able to proliferate, differentiate, and transmit genetic information to the next generation. However, the effect of different Sertoli cell types on the expression of specific SSC genes is not yet well understood. In this study, we compare the in vitro effect of adult Sertoli cells, embryonic Sertoli cells, and TM4 (a Sertoli cell line) as feeder layers on the expression of SSC genes. SSCs were isolated from the testis of adult male mice and purified by differential plating. Following enrichment, SSCs were cultivated for 1 and 2 wk in the presence of various feeders. The expression of SSC-specific genes (Mvh, ZBTB, and c-kit) was evaluated by real-time polymerase chain reaction. Our results revealed that expression of the specific SSC genes was significantly higher in the embryonic Sertoli cells after 1 and 2 wk compared to the adult Sertoli cells and the TM4 group. Our finding suggest that co-culturing of SSCs with embryonic Sertoli cells is helpful for in vitro cultivation of SSCs and might improve the self-renewal of these stem cells.  相似文献   

18.
19.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by differentiation of a transient population of germ cells called gonocytes in the center of the seminiferous tubules. After resuming mitotic activity, gonocytes relocate on the basement membrane, giving rise to spermatogonial stem cells (SSCs). These processes begin from birth in mice, and differentiated type A spermatogonia first appear by day 6 postpartum. During these processes, Sertoli cells within the seminiferous tubules and Leydig cells in the interstitial tissue form the stem cell “niche,” and influence SSC fate decisions. Thus, we collected whole mouse testis tissues during the first wave of spermatogenesis at specific time points (days 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 postpartum) and constructed a comparative proteomic profile. We identified 252 differentially expressed proteins classified into three clusters based on expression, and bioinformatics analysis correlated each protein pattern to specific cell processes. Expression patterns of nine selected proteins were verified via Western blot, and cellular localizations of three proteins with little known information in testes were further investigated during spermatogenesis. Taken together, the results provide an important reference profile of a functional proteome during neonatal mouse gonocyte and SSC maturation and differentiation.  相似文献   

20.
Developmental abnormalities, cancer, and premature aging each have been linked to defects in the DNA damage response (DDR). Mutations in the ATR checkpoint regulator cause developmental defects in mice (pregastrulation lethality) and humans (Seckel syndrome). Here we show that eliminating ATR in adult mice leads to defects in tissue homeostasis and the rapid appearance of age-related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. Histological and genetic analyses indicate that ATR deletion causes acute cellular loss in tissues in which continuous cell proliferation is required for maintenance. Importantly, thymic involution, alopecia, and hair graying in ATR knockout mice were associated with dramatic reductions in tissue-specific stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity. In aggregate, these studies suggest that reduced regenerative capacity in adults via deletion of a developmentally essential DDR gene is sufficient to cause the premature appearance of age-related phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号