首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An indirect in vitro plant regeneration protocol for Vanilla planifolia has been established. Juvenile leaf and nodal segments from V. planifolia were used as explants to initiate callus. Nodal explants showed better callus initiation than juvenile leaf explants, with 35.0% of explants forming callus when cultured on Murashige and Skoog (MS) basal medium supplemented with 2.0 mg/l 1-naphthylacetic acid (NAA) and 1.0 mg/l 6-benzyladenine (BA). Almost 10.0% of juvenile leaf explants were induced to form callus on the MS basal medium containing 2.0 mg/l NAA and 2.0 mg/l BA, whereas no callus formed in the presence of any concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and BA. After 8 weeks, callus generated was transferred to MS basal medium containing 1.0 mg/l BA and 0.5 mg/l NAA. A mean number of 4.2 shoots per callus was produced on this medium, with a mean length of 3.8 cm after 8 weeks of culture. Roots formed on 88.3% of plantlets when they were cultured on MS medium supplemented with 1.0 mg/l NAA, with a mean length of 4.4 cm after 4 weeks of culture. Of the rooted plantlets, 90.0% survived acclimatisation and were making new growth after 4 weeks.  相似文献   

2.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

3.
Adventitious shoot regeneration via callus phase from in vitro leaf explants is reported for the first time in tea. Callus was obtained on Murashige and Skoog medium supplemented with varied concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5, 5.0, 7.5 and 10.0 mg/l). Rhizogenesis was observed at all concentrations of 2,4-D. Adventitious shoot buds developed indirectly on leaf explants after prolonged culture for 16 weeks on medium supplemented with 10.0 mg/l 2,4-D. GC analysis of the medium and the tissues at different stages of development showed that specific levels of 2,4-D in the tissue were responsible for morphogenesis. Shoot buds developed on rhizogenic calli, only when 2,4-D declined to undetectable or negligible concentrations in the tissue probably due to detoxification and metabolism. Alternatively, shoot buds could also be evoked when rhizogenic calli were transferred to medium supplemented with low concentration of 2,4-D (1.5 mg/l). The adventitious nature of the shoots was confirmed through histological studies.  相似文献   

4.
A non-sporulating isolate of Alternaria brassicae, inoculated on callus culture of Brassica juncea cv. Kranti, colonized the callus and produced spores. When captafol, a fungicide, was added (100 mg/l) to the callus culture medium, if effectively checked fungal contamination and saprophytic growth of A. brassicae on culture medium, without adversely affecting callus growth or establishment of dual culture.  相似文献   

5.
Callus cultures were raised from bulb scale segments ofOrinthogalum umbellatum L. (Liliaceae), on a Murashige and Skoog (1962) medium (MS) with 8 mg/l naphthaleneacetic acid (NAA). Bulbous shoots developed from calli after 2 months using MS medium with 2 mg/l NAA and 0.5 mg/l N6 - benzyladenine (BA). Shoots were also induced directly from scales of regenerated bulb used as secondary explants on MS medium supplemented with 0.5 mg/l BA. Shoots developed roots in 1/2 - strength MS medium. Regenerants multiplied rapidly in 1/2-MS liquid medium. Chromosome instability was reduced in callus grown on 2 mg/l NAA compared to callus grown on 8 mg/l NAA. Callus retained regeneration potential for 5 years in this modified MS medium. The chromosome analysis of regenerants dervied from callus, even from long term culture of 5 years, revealed only diploid cells with normal karyotype comprising 2n=46 chromosomes. Stable nature of callus and regenerants were further confirmed by cytophotometry. This procedure can be applied for securing stable regenerants on a mass scale inO. umbellatum.  相似文献   

6.
Somatic embryogenesis from stem and leaf explants of Quercus robur L.   总被引:2,自引:0,他引:2  
Internodal and leaf segments from pedunculate oak (Quercus robur L.) seedlings were used as explant source to induce somatic embryogenesis. Auxin treatment influenced embryogenic response, which only occurred in explants initially cultured on media containing 4 mg/l naphthaleneacetic acid (NAA) and different benzyladenine (BA) concentrations. After 6 weeks of culture on induction medium, the explants were transferred to medium supplemented with 0.1 mg/l BA and 0.1 mg/l NAA, and 4 weeks later, they were subcultured in a growth-regulator-free medium, in which somatic embryos arose through indirect regeneration on the surface of a nodular callus. Somatic embryos were induced in explants of two out of four seedling provenances. The induction frequency ranged from 16% in leaf explants to 4% in internodal explants. Somatic embryos developed two cotyledons, which were translucent or opaque-white in appearance, but anomalous morphologies were also observed. Different embryogenic lines were established and maintained by repetitive embryogenesis in multiplication medium containing 0.1 mg/l BA plus 0.05 mg/l NAA. These results indicate that tissues from explants other than Q. robur zygotic embryos are able to produce embryogenic cultures. Received: 14 July 1998 / Revision received: 2 November 1998 / Accepted: 6 November 1998  相似文献   

7.
A tissue culture procedure was developed for the regeneration of somatic embryos from callus cultures of the avocado,Persea americana. Immature zygotic embryos, 0.6–0.8 mm long, were used as original explants. Addition of 0.1 mg/l picloram (4-amino-3,5,6-trichloropicolinic acid) to culture medium appeared critical for callus initiation. Development of somatic embryos was accomplished in picloram concentrations of 0.01 to 0.1 ml/l. A few well developed embryos produced green shoots. Attempts to induce a higher incidence of germination were unsuccessful.Investigation was supported by funds from the California Avocado Society, the Instituto Nacional de Investigaciones Agrarias, the Fundation Juan March, the Chancellor's Patent Fund, and the Southern California Phi Beta Kappa Alumni Association. Authors thank H. Quick for the photography and J. Lippert for the illustrations.  相似文献   

8.
Plantlets were regenerated from cultured seed explants of the forage grass Caucasian bluestem [Bothriochloa caucasica (Trin.) C.E. Hubbard] via somatic embryogenesis. Embryogenic callus was produced in four weeks when surface sterilized seeds were cultured on a medium containing MS-salts, B-5 vitamins, 12 mM L-proline, 2% sucrose, 0.8% agar and 5M 2,4-D. Plantlets were regenerated in 6–8 weeks after culture initiation. Healthy root and shoot systems were produced within three weeks after the plantlets were transferred to a medium lacking 2,4-D. Approximately 95% of the plantlets survived greenhouse acclimation and produced healthy plants and viable seeds. Caucasian bluestem callus cultures exhibit natural resistance to kanamycin. High levels of kanamycin (up to 800 mg/l) did not completely inhibit callus growth. However, the regeneration of healthy-plantlets was completely inhibited by kanamycin even at low levels (50 mg/l).  相似文献   

9.
We present efficient protocols for the regeneration of fertile plants from corm explants of Hypoxis hemerocallidea Fisch. & C. A. Mey. landrace Gaza, either by direct multiple shoot formation or via shoot organogenesis from corm-derived calluses. The regeneration efficiency depended on plant growth regulator concentrations and combinations. Multiple direct shoot formation with high frequency (100% with 5–8 shoots/explant) was obtained on a basal medium (BM) supplemented with 3 mg/l kinetin (BM1). However, efficient indirect regeneration occurred when corm explants were first plated on callus induction medium (BM2) with high kinetin (3 mg/l) and naphthalene acetic acid (NAA 1 mg/l), and then transferred to shoot inducing medium (BM3) containing BA (1.5 mg/l) and NAA (0.5 mg/l). Shoot regeneration frequency was 100% and 30–35 shoots per explant were obtained. The regenerated shoots were rooted on a root inducing medium (BM4) containing NAA (0.1 mg/l). Rooted plantlets were transferred to the greenhouse. The regenerants were morphologically normal and fertile. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. Efficient cloning protocols described here, have the potential not only to substantially reduce the pressure on natural populations but also for wider biotechnological applications of Hypoxis hemerocallidea—an endangered medicinal plant.  相似文献   

10.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   

11.
Abstract

Callus production, shoot formation via organogenesis and rooting of the regenerated shoots are reported in an Egyptian variety of Pisum sativum L. Calli were initiated from hypocotyl, leaf, root and mature embryo explants when cultured on MS medium containing B5 vitamins and supplemented with 2 mg/l 2,4-D+1 mg/l kin. Among the different types of explants, hypocotyl showed best potential for callus proliferation. Hypocotyl, leaf and immature cotyledon explants were used for shoot organogenesis. The best results of shoot formation were achieved when hypocotyl explants were cultured on MS-medium supplemented with 2 mg/l BA+1 mg/l NAA. However, immature cotyledon explants showed the highest frequency of shoot formation with 1 mg/l BA. Data of in vitro rooting showed that maximum root frequency occurred on culture medium containing half strength of MS salts, 40 g/l sucrose and 2 mg/l NAA.  相似文献   

12.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

13.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

14.
Anthurium anther culture was successfully established using half-anthers as explants. Explants were cultured on Winarto–Teixeira basal medium (WT-1) containing 0.01 mg/l α-naphthalene acetic acid (NAA), 0.5 mg/l thidiazuron (TDZ), and 1.0 mg/l 6-benzylaminopurine (BAP), or on New Winarto–Teixeira basal medium (NWT-3) supplemented with 0.02 mg/l NAA, 1.5 mg/l TDZ, and 0.75 mg/l BAP for callus initiation. Regenerated calli produced multiple shoots on WT-1, which were then rooted in NWT-3 supplemented with 1% activated charcoal. Plantlets were acclimatized ex vitro using a mixture of burned rice husk, rice husk, and bamboo peat (1:1:1, v/v/v) as the potting medium. There was considerable morphological and cytological diversity of regenerants derived from anther culture, which are described in detail in this study. The callus cluster color ranged from green to light green and had a high regeneration capacity (7.3 and 4.8 shoots/callus cluster), light reddish-yellow callus showed moderate regeneration (2.6 shoots/callus cluster), while reddish-yellow callus had the lowest regeneration capacity (1.5 shoots/callus cluster). Morphological variations clearly observed in regenerants derived from this technique included alterations in plant size, peduncle length, spathe position compared to leaves, the type and number of buds, spathe and spadix color, and spadix length. There were also cytological variations in both in vitro and ex vitro regenerants of anther culture with 23–29% haploids, 5–10% aneuploids, 56–69% diploids, and 3–4% triploids. The results strengthen other studies in which the development of anther cultures, especially via callus formation, resulted in morphological and cytological alterations. These variations have been discussed to great length in this paper.  相似文献   

15.
Summary Somatic embryogenesis of Calamus manan, a single-stemmed rattan species, in tissue culture was scientifically demonstrated for the first time. Root tips of in vitro plantlets produced friable callus when the explants were cultivated for several mo. on a Murashige and Skoog induction medium containing 7.5 mg Picloram per l (31.1 μM). Histological analyses established the presence of proembryos within the callus which differentiated subsequently into somatic embryos using the same culture medium. Histological examination revealed that these somatic embryos completely lacked starch and protein reserves, which did not prevent them, however, from germinating, and showing bipolar development. These somatic embryos further developed into young plants, similarly to zygotic embryos.  相似文献   

16.
Tissue culture techniques were applied for micropropagation of the red alga Kappaphycus alvarezii in order to select the best strain and experimental system for in vitro culture. Five strains were tested: brown (BR), green (GR) and red (RD) tetrasporophytes, brown female gametophyte (BFG), and a strain originating from tetraspore germination (“Edison de Paula”, EP). The effects of three culture media were tested on callus formation, regeneration from explants and from callus in the three tetrasporophytic and EP strains: seawater enriched with half-strength of von Stosch’s (VS 50) and Guillard & Ryther’s (F/2 50) solutions, plus synthetic ASP 12-NTA medium, with or without gelling agent. Explants of the EP strain were treated with glycerol and the phytoregulators indole-3-acetic acid (IAA); 2,4-diclorophenoxyacetic acid (2,4-D); and benzylaminopurine (BA), alone or in combination. The effects of colchicine (0.01%) during 24, 48, 72 hours and 14 days were analyzed in the BFG and EP strains. The EP strain showed the highest percentage of explants forming callus and regeneration from explants in VS 50, indicating its high potential for micropropagation in comparison to the other strains. Regeneration from callus was very rare. Treatments with glycerol and IAA:BA (5:1 mg L−1) stimulated the regeneration from explants. Significant differences were observed in the percentages of regeneration of EP strain explants treated with colchicine for 14 days. Our results indicate that IAA and BA stimulated the regeneration process, and that colchicine produced explants with high potential for regeneration, being useful for improving the micropropagation of K. alvarezii.  相似文献   

17.
Cell suspension cultures of Cyperus aromaticus were established from the yellow friable callus derived from the root explants of in vitro plantlets. Four callus cell lines were selected based on their growth index from two populations of callus cultures originated from the mother plants grown in two different locations. The selected four cell lines (Z1, Z6, P4, P9) showed uniform cell growth but produced different amounts of juvenile hormone III (JHIII). The Z1 cell line possessed fast-growing characteristics, produced a high JHIII content, and was chosen as the elite cell line for an optimization study of C. aromaticus cell suspension cultures. An inoculum cell mass of 0.3 g from 12-d cultures in 30 ml culture medium was found to be the optimum inoculum size and culture age for establishing the cell suspension culture of C. aromaticus. MS basal medium supplemented with 4.5 mg/l 2,4-D and 5.5 mg/l NAA was found to be the best medium for production of maximum cell biomass and JHIII. These results indicated that JHIII can be produced from suspension culture of C. aromaticus using a single-stage cell-culture system.  相似文献   

18.
Several culture conditions were examined for promoting efficient plant regeneration from explants of Gentiana. Adventitious shoot regeneration from leaf explants of cv. WSP-3 was very superior on MS medium, compared to B5 medium, supplemented with four cytokinins (TDZ, 4PU-30, BA and zeatin). An auxin / cytokinin combination was required for regeneration. TDZ was the most effective cytokinin, while NAA was more effective than IAA or 2,4-D. Optimum conditions for regeneration from explants (leaf, stem and root) of cv. WSP-3, evaluated in terms of regeneration frequency and number of regenerated shoots per explant, were TDZ and NAA in combination, 5–10 mg/l and 0.1 mg/l for leaf and stem explants, and 10 mg/l and 1 mg/l for root explants, respectively. Application of these conditions to eight other commercial cultivars resulted in 30–100% regeneration from leaf explants. The number of chromosomes in each of ten regenerated plants of each cultivar was diploid, 2n=26. Shoots regenerated in vitro were rooted in phytohormone-free medium and transferred to soil.Abbreviations MS medium Murashige and Skoog's medium (Murashige and Skoog 1962) - B5 medium Gamborg B5 medium (Gamborg et al. 1968) - BA 6-benzylaminopurine - TDZ N-phenyl-N'-1,2,3-thiadiazol-5-yl urea - 4PU-30 N-(2-chloro-4-pyridyl)-N'-phenylurea - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

19.
This study describes in vitro shoot induction and plant regeneration from a mature apical meristem and nodal explants of the endangered medicinal shrub Vitex agnus-castus. Multiple shoots were induced directly from the axis of nodal and apical meristem explants on Murashige and Skoog (MS) medium containing 3% sucrose and different concentrations (1.0, 1.5, 2.0, and 2.5 mg/l) of 6-benzyl aminopurine (BAP) in combination with Kinetin (Kin) and α-naphthalene acetic acid (NAA), both at 0.1 mg/l. BAP and Kinetin were used as supplements to MS basal medium, either individually or in combination with auxins. The optimal concentration of BAP for inducing bud break was found to be 2.0 mg/l when Kinetin was at 0.1 mg/l. Regeneration frequency was highest for both apical meristem and nodal explants (94.5% and 90.3%, respectively) when explants were cultured on MS medium supplemented with BAP (2.0 mg/l) and Kin (0.1 mg/l). A maximum of 7.7 ± 0.4 and 6.7 ± 0.2 shoots were obtained per explant for apical meristem and nodal explants, respectively. Regenerated shoots, transferred to MS medium supplemented with either 1.0 or 1.5 mg/l BAP combined with 0.1 mg/l GA3, showed maximum elongation of 6.7 ± 0.4 and 6.0 ± 1.3 cm in apical meristem and nodal explants, respectively. In vitro regenerated shoots transferred to half-strength MS medium supplemented with 0.1 mg/l IBA induced 90.4% of the shoots to form roots after 30–35 d of culture. Up to 80% of the regenerated shoots were successfully established in soil in the greenhouse.  相似文献   

20.
Somatic embryogenesis and plant regeneration of Canada wildrye (Elymus canadensis L.) from tissue culture was investigated by culturing immature embryos and inflorescences on MS medium containing 2 mg/l 2,4-D. The optimum size of explants for maximum embryogenic callus formation was 1.0 to 1.5 mm for embryos and 4 to 6 cm for inflorescences. Plant regeneration from the subcultured embryogenic callus was attempted monthly using hormone-free MS medium or MS medium with 0.5 mg/1 2,4-D and 0.3 mg/l GA3. Three hundred and fifty seven plantlets were regenerated from the callus cultures of both explant sources during a six month period. Ten chlorophyll deficient plants accounting for 2.8% of the total regenerants were observed. One plant with white striped leaves survived and was found to be an octoploid.Abbreviations GA3 gibberellic acid - MS Murashige and Skoog (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号