首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chang Q  Gong SS  Ding J  Tang M  Hescheler J 《生理学报》2005,57(2):217-224
为观察胞外钙对豚鼠耳蜗单个离体Deiters细胞钾电流的调控作用并探讨其机制,实验记录了Deiters细胞在正常细胞外液和无钙外液中的全细胞钾电流(whole cell K^ currents,IK),并分析了其电生理学特性的改变。结果观察到,Deiters细胞与在正常细胞外液中相比,在祛除细胞外液中的Ca^2 后Ik电流幅值明显增加,弦电导值亦明显增加,但其平衡电位未明显改变。在无钙外液中Ik电流的反转电位向超极化方向明显移位,更接近于按照Ner-nst方程得出的K^ 理论平衡电位;而且其稳态激活曲线亦向超极化方向明显移位,但其激活趋势与正常相比无明显改变。此外,观察了Deiters细胞中钙抑制性钾电流的电流-电压关系和电导-电压关系,发现两者均呈“S”形,提示此钙抑制性钾电流可能存在2种不同的钾电导成分。由此,推测可能有两种机制参与胞外钙对Deiters细胞钾电流的调控:(1)Deiters细胞中的Ik通道可能存在一个Ca^2 敏感结构域,胞外Ca^2 可能通过改变此结构域而对Ik电流产生调制;(2)Deiters细胞中可能存在一种新型的双相门控性钾通道或钾通道耦联型受体或是一种新型的钾通道亚型,祛除胞外Ca^2 可激活此新型钾电导而对L电流产生调制。由此推测,在听觉形成过程中,胞外钙浓度下降可以对Deiters细胞的全细胞钾电流产生调制,从而更有利于Deiters细胞内K^ 外流,进而有效地缓冲外毛细胞周围的K^ 浓度:而且还可以使Deiters细胞产生更快的复极化并有利于维持其静息状态。  相似文献   

2.
Na+和Ca2+对拟南芥根原生质体质膜内向K+通道电流的影响   总被引:3,自引:1,他引:2  
以拟南芥(Arabidopsis thaliana Columbia)根为材料,利用膜片钳技术测定其根细胞原生质体质膜内向K^ 电流,并对Na^ 对其K^ 电流的影响进行了初步研究,发现Na^2 可明显抑制拟南芥根细胞原生质体的内向K^ 电流,外施Ca^2 可缓解Na^ 对内向K^ 电流的抑制.说明Ca^2 参与了质膜上K^ 通道对K^ /Na^ 的选择性吸收的调节,从而使植物适应盐胁迫.  相似文献   

3.
氧化信号参与了许多生理过程的调控。用膜片钳和激光共聚焦显微镜,采用可以产生O2^ 的甲基紫精处理蚕豆(Vicia faba L)保卫细胞,测定了O2^ 对气孔运动调节过程中胞质Ca^2 离子浓度和细胞质膜K^ 通道活性的变化,结果表明甲基紫精可以促进气孔的关闭,乙二醇四乙酸酯(Ethylene glycol bis(2-aminoethyl)tetra-acetic acid,EGTA)、抗坏血酸(Ascorbic acid,AsA)和过氧化物酶(Catalase,CAT)可以消除小于10^-5mol/L甲基紫精对气孔运动的影响;10^-2和10^-5mol/L的甲基紫精可使保卫细胞胞质Ca^2 浓度有不同程度提高,并伴随有钙震荡。蚕豆气孔保卫细胞质膜内向K^ 通道可被咆外甲基紫精抑制,而这种抑制和[Ca^2 ]cyt有关。推测甲基紫精产生的O2^-对蚕豆气孔运动的调节,主要是通过O2^ 诱导的胞内游离Ca^2 浓度的升高,从而抑制了通过保卫细胞质膜K^ 内向电流。  相似文献   

4.
拟南芥根皮层细胞质膜内向K+通道电生理特性分析   总被引:8,自引:0,他引:8  
利用膜片钳技术对模式植物拟南芥根皮层细胞原生质体的内向跨膜钾电流进行了全细胞记录,并对内向K+通道的特性进行了分析.结果表明,拟南芥根细胞质膜上的内向K+通道由超极化膜电位所激活;该通道具有较高的K+/Na+选择性,可被TEA+和Ba2+等K+通道阻断剂所抑制,而且对胞内自由Ca2+浓度变化不敏感.这为进一步利用模式植物拟南芥进行植物K+吸收机制以及植物抗盐机制的研究奠定了基础.  相似文献   

5.
马翔  张超  司军强  马克涛 《生物磁学》2010,(17):3384-3386
K^+通道维持着血管平滑肌细胞的静息膜电位。目前发现血管微动脉平滑肌细胞上主要表达内向整流型K^+通道、ATP敏感型K^+通道、电压依赖型K^+通道和大电导钙激活型K^+通道等四种K^+通道。本文对微动脉平滑肌细胞K^+通道最新进展做一综述。  相似文献   

6.
Gong SS  Chang Q  Ding J 《生理学报》2004,56(4):531-538
为探讨KCNQ家族钾通道在耳蜗外毛细胞和Deiters细胞的功能性表达,我们观察并记录了KCNQ家族钾通道阻滞剂利诺吡啶对豚鼠耳蜗单离外毛细胞(outer hair cells,OHCs)和Deiters细胞总钾电流的影响。采用酶孵育加机械分离法分离豚鼠耳蜗单个OHCs和Deiters细胞:运用膜片钳技术,在全细胞模式下记录正常细胞外液中8个外毛细胞和5个Deiters细胞的总钾电流,并观察100μmol/L和200μmol/L利诺吡啶对外毛细胞和Deiters细胞总钾电流的影响。结果观察到,在正常细胞外液中的单离外毛细胞,可记录到四乙基二乙胺敏感的外向性钾电流和静息膜电位附近激活的内向性钾电流(the K^ current activated at negative potential,IKa)两种钾电流,而在单离Deiters细胞中只记录到外向整流性钾电流。在细胞外液中,加入100μmol/L利诺吡啶后,OHCs中的四乙基二乙胺敏感的钾电流峰电流成分被抑制,稳态电流幅值减小,且电流的失活时问常数明显延长;在细胞外液中加入100μmol/L和200μmol/L利诺吡啶后,OHCs的内向性钾电流IKa被完全抑制;而细胞外液中利诺吡啶终浓度为200μmol/L时,Deiters细胞的外向整流性钾电流幅值无明显变化。由此我们推测,KCNQ家族钾通道存在于豚鼠耳蜗外毛细胞,其介导的钾电流是四乙基二乙胺敏感的钾电流的组成部分,并构成全部的IKn,其功能是介导细胞内K^ 外流和防止细胞过度去极化;KCNQ家族钾通道不存在于豚鼠耳蜗Dciters细胞。  相似文献   

7.
用膜片钳全细胞记录方式记录蚕豆保卫细胞原生质体内向钾电流,结果发现,低浓度乙酰胆碱处理促进内向钾电流,高浓度乙酰胆碱处理则抑制内向钾电流.乙酰胆碱受体的拮抗剂d-管箭毒和阿托品分别抑制的内向钾电流约30%;同时使用d-管箭毒和阿托品则抑制60%~75%的内向钾电流,四乙铵离子处理不影响乙酰胆碱调节的内向钾电流.以上结果表明,乙酰胆碱及其受体可能是通过调节保卫细胞质膜上的内向钾通道参与对气孔运动的调节.  相似文献   

8.
目的:观察葛根素对大鼠心室肌细胞动作电位及钾通道电流的影响。方法:用常规微电极方法记录大鼠心室肌细胞动作电位,用全细胞膜片钳技术记录游离心室肌细胞钾离子流。结果:不同浓度的葛根素均能延长大鼠心室肌细胞动作电位时程(APD)及抑制内向整流钾电流,具有明显的浓度依赖关系。结论:葛根素延长APD,抑制内向整流钾电流,可能是其抗心律失常的机制。  相似文献   

9.
Hu Y  Zou F  Cai CQ  Wu HY  Yun HX  Chen YT  Jin GE  Ge RL 《生理学报》2006,58(5):477-482
本文旨在研究大鼠传导性肺动脉平滑肌细胞(pulmonary artery smooth muscle cells,PASMCs)的电生理特征及对急性低氧的反应。用酶解法急性分离出1-2级分支的PASMCs,通过全细胞膜片钳方法研究常氧及急性低氧状况下细胞钾电流的差异,并在常氧下先后使用iBTX和4-AP阻断大电导钙激活钾离子(large conductance Ca-activated K^+,BKCa)通道及延迟整流性钾离子(delayed rectifier K^+,KDR)通道后,观察细胞钾电流特征。根据细胞的大小、形态及电生理特征可将PASMCs分为Ⅰ、Ⅱ、Ⅲ类。iBTX对Ⅰ类细胞几乎无作用,而4-AP几乎完全阻断它的钾电流;Ⅱ类细胞的钾电流在加入iBTX后大部分被抑制,其余的对4.AP敏感;Ⅲ类细胞的钾电流对iBTX及4-AP均敏感。急性低氧对三类细胞的钾电流均有不同程度的抑制,并使Ⅰ类细胞的膜电位显著升高,而Ⅱ、Ⅲ类细胞膜电位升高的程度不如Ⅰ类显著。结果表明,传导性肺动脉有3种形态及电生理特性不同的PASMCs,在急性低氧时其钾电流不同程度地受到抑制,同时静息膜电位也有不同程度去极化,这些可能参与急性低氧时传导性肺动脉舒缩反应的调节。KDR及BKCa通道在3种细胞中的比例不同可能是急性低氧对3种PASMCs影响不同的离子基础。  相似文献   

10.
剪切力诱导微血管内皮细胞K~+通道的开放   总被引:3,自引:0,他引:3  
利用膜片针及内皮细胞流动小室方法对大鼠脑微血管内皮细胞在剪切力作用下内上细胞壁K^+通道的开放进行了初步研究。结果提示脑微务人皮细胞膜上存在剪切力敏感的T^+通道,剪切方作用后,内皮丰K^+电流明显增大,此电流有明显的短智延迟现象也可以被胞外施抑制,符合IKV特征。流动剪切力可以影响内皮细胞膜上的K^+通道的开放引身 离子通透性的增加,进而引起细胞内Ca62+的变化,在K^+、Ca^2+等离子浓度  相似文献   

11.
K+ is the most abundant cation in cells of higher plants, and it plays vital roles in plant growth and development. Extensive studies on the kinetics of K+ uptake in roots have shown that K+ uptake is mediated by at least two transport mechanisms, one with a high and one with a low affinity for K+. However, the precise molecular mechanisms of K+ uptake from soils into root epidermal cells remain unknown. In the present study we have pursued the biophysical identification and characterization of mechanisms of K+ uptake into single root hairs of wheat (Triticum aestivum L.), since root hairs constitute an important site of nutrient uptake from the soil. These patch-clamp studies showed activation of a large inward current carried by K+ ions into root hairs at membrane potentials more negative than -75 mV. This K+ influx current was mediated by hyperpolarization-activated K+-selective ion channels, with a selectivity sequence for monovalent cations of K+ > Rb+ [almost equal to] NH4+ >> Na+ [almost equal to] Li+ > Cs+. Kinetic analysis of K+ channel currents yielded an apparent K+ equilibrium dissociation constant (Km) of [almost equal to]8.8 mM, which closely correlates to the major component of low-affinity K+ uptake. These channels did not inactivate during prolonged stimulation and would thus enable long-term K+ uptake driven by the plasma membrane proton-extruding pump. Aluminum, which is known to inhibit cation uptake at the root epidermis, blocked these inward-rectifying K+ channels with half-maximal current inhibition at [almost equal to]8 [mu]M free Al3+. Aluminum block of K+ channels at these Al3+ concentrations correlates closely to Al3+ phytotoxicity. It is concluded that inward-rectifying K+ channels in root hairs can function as both a physiologically important mechanism for low-affinity K+ uptake and as regulators of membrane potential. The identification of this mechanism is a major step toward a detailed molecular characterization of the multiple components involved in K+ uptake, transport, and membrane potential control in root epidermal cells.  相似文献   

12.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

13.
1. The cytoplasmic membrane ionic current of cells of Rhodobacter capsulatus, washed to lower the endogenous K+ concentration, had a non-linear dependence on the membrane potential measured during photosynthetic illumination. Treatment of the cells with venturicidin, an inhibitor of the H(+)-ATP synthase, increased the membrane potential and decreased the membrane ionic current at values of membrane potential below a threshold. 2. The addition of K+ or Rb+, but not of Na+, led to an increase in the membrane ionic current and a decrease in the membrane potential in either the presence or absence of venturicidin. Approximately 0.4 mM K+ or 2.0 mM Rb+ led to a half-maximal response. At saturating concentrations of K+ and Rb+, the membrane ionic currents were similar. The membrane ionic currents due to K+ and Rb+ were not additive. The K(+)-dependent and Rb(+)-dependent ionic currents had a non-linear relationship with membrane potential: the alkali cations only increased the ionic current when the membrane potential lay above a threshold value. The presence of 1 mM Cs+ did not lead to an increase in the membrane ionic current but it had the effect of inhibiting the membrane ionic current due to either K+ or Rb+. 3. Photosynthetic illumination in the presence of either K+ or Rb+, and weak acids such as acetate, led to a decrease in light-scattering by the cells. This was attributed to the uptake of potassium or rubidium acetate and a corresponding increase in osmotic strength in the cytoplasm. 4. The addition of NH4+ also led to an increase in membrane ionic current and to a decrease in membrane potential (half-maximal at 2.0 mM NH4+). The relationship between the NH4(+)-dependent ionic currents and the membrane potential was similar to that for K+. The NH4(+)-dependent and K(+)-dependent ionic current were not additive. However, illumination in the presence of NH4+ and acetate did not lead to significant light-scattering changes. The NH4(+)-dependent membrane ionic current was inhibited by 1 mM Cs+ but not by 50 microM methylamine. 5. It is proposed that the K(+)-dependent membrane ionic current is catalysed by a low-affinity K(+)-transport system such as that described in Rb. capsulatus [Jasper, P. (1978) J. Bacteriol. 133, 1314-1322]. The possibility is considered that, as well as Rb+, this transport system can also operate with NH4+. However, in our experimental conditions NH4+ uptake is followed by NH3 efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Symbiosome membrane vesicles, facing bacteroid-side-out, were purified from pea (Pisum sativum L.) root nodules and used to study NH4+ transport across the membrane by recording vesicle uptake of the NH4+ analog [14C]methylamine (MA). Membrane potentials ([delta][psi]) were imposed on the vesicles using K+ concentration gradients and valinomycin, and the size of the imposed [delta][psi] was determined by measuring vesicle uptake of [14C]tetraphenylphosphonium. Vesicle uptake of MA was driven by a negative [delta][psi] and was stimulated by a low extravesicular pH. Protonophore-induced collapse of the pH gradient indicated that uptake of MA was not related to the presence of a pH gradient. The MA-uptake mechanism appeared to have a large capacity for transport, and saturation was not observed at MA concentrations in the range of 25 [mu]M to 150 mM. MA uptake could be inhibited by NH4+, which indicates that NH4+ and MA compete for the same uptake mechanism. The observed fluxes suggest that voltage-driven channels are operating in the symbiosome membrane and that these are capable of transporting NH4+ at high rates from the bacteroid side of the membrane to the plant cytosol. The pH of the symbiosome space is likely to be involved in regulation of the flux.  相似文献   

15.
Patch clamping whole-cell reeording techniques were apphed to study the inward K~ channels in Arabidopsis root cortex cells. The inward K~ -channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K~ ions over Na~ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca~(2 ) concentrations did not affect the whole-cell inward K~ -currents. The possible asso(?)ation betw(?)en the channel selectivity to K~ and Na(?) ions and plant salt-tolerance was also discussed.  相似文献   

16.
Patch clamp techniques have been used to identify and characterize the whole-cell currents carried by inward K+ channels in isolated matured pollen protoplasts of Brassica chinensis var. chinensis. The whole-cell inward currents in the isolated pollen protoplasts were activated at hyperpolarized membrane potentials more negative than -100 mV. The magnitudes of the whole-cell inward currents were strongly dependent on the external K+ concentration, and were highly selective for K+ over other monovalent cations. The inward currents were not observed when external K+ was replaced with the same concentration of Cs+ or Na+. The addition of 1 mM or 10 mM Ba2+ in external solutions resulted in 30% or 80% inhibition of the inward currents at -180 mV, respectively. These results demonstrated that the inward K+ currents mainly account for the recorded whole-cell inward currents in Brassica pollen protoplasts. Increase of cytoplasmic Ca2+ concentrations from 10 nM to 30 microM or even 5 mM did not affect the inward K+ currents. Decrease of external Ca2+ concentrations from 10 mM to 1 mM inhibited the inward K+ currents by 25%, while the increase of external Ca2+ from 10 mM to 50 mM almost completely blocked the inward K+ currents. Physiological importance of K+ transport into pollen and its possible regulatory mechanisms are also discussed.  相似文献   

17.
茉莉酸甲酯抑制拟南芥根伸长生长电生理学机制   总被引:1,自引:0,他引:1  
以外源茉莉酸甲酯(JA-Me)处理拟南芥,运用膜片钳技术研究JA-Me、过氧化氢(H2O2)和内向K+通道之间的关系,以探讨茉莉酸类物质(JAs)抑制根伸长生长分子机制。检测到10-4mol/L的JA-Me能抑制根细胞质膜内向K+电流,表明可能与根的伸长生长有关,并且发现H2O2可能作为第二信使参与了JAs抑制根伸长生长的过程,H2O2介导的JA-Me对根细胞内向K+通道的抑制是根生长受抑的可能电生理机制。  相似文献   

18.
The transport of ammonium/ammonia is a key process for the acquisition and metabolism of nitrogen. Ammonium transport is mediated by the AMT/MEP/Rh family of membrane proteins which are found in microorganisms, plants, and animals, including the Rhesus blood group antigens in humans. Although ammonium transporters from all kingdoms have been functionally expressed and partially characterized, the transport mechanism, as well as the identity of the true substrate (NH(4+) or NH(3)) remains unclear. Here we describe the functional expression and characterization of LeAMT1;1, a root hair ammonium transporter from tomato (Lycopersicon esculentum) in Xenopus oocytes. Micromolar concentrations of external ammonium were found to induce concentration- and voltage-dependent inward currents in oocytes injected with LeAMT1;1 cRNA, but not in water-injected control oocytes. The NH(4+)-induced currents were more than 3-fold larger than methylammonium currents and were not subject to inhibition by Na(+) or K(+). The voltage dependence of the affinity of LeAMT1;1 toward its substrate strongly suggests that charged NH(4+), rather than NH(3), is the true transport substrate. Furthermore, ammonium transport was independent of the external proton concentration between pH 5.5 and pH 8.5. LeAMT1;1 is concluded to mediate potential-driven NH(4+) uptake and retrieval depending on root membrane potential and NH(4+) concentration gradient.  相似文献   

19.
Voltage-gated potassium channels in brown fat cells   总被引:6,自引:4,他引:2       下载免费PDF全文
We studied the membrane currents of isolated cultured brown fat cells from neonatal rats using whole-cell and single-channel voltage-clamp recording. All brown fat cells that were recorded from had voltage-gated K currents as their predominant membrane current. No inward currents were seen in these experiments. The K currents of brown fat cells resemble the delayed rectifier currents of nerve and muscle cells. The channels were highly selective for K+, showing a 58-mV change in reversal potential for a 10-fold change in the external [K+]. Their selectivity was typical for K channels, with relative permeabilities of K+ greater than Rb+ greater than NH+4 much greater than Cs+, Na+. The K currents in brown adipocytes activated with a sigmoidal delay after depolarizations to membrane potentials positive to -50 mV. Activation was half maximal at a potential of -28 mV and did not require the presence of significant concentrations of internal calcium. Maximal voltage-activated K conductance averaged 20 nS in high external K+ solutions. The K currents inactivated slowly with sustained depolarization with time constants for the inactivation process on the order of hundreds of milliseconds to tens of seconds. The K channels had an average single-channel conductance of 9 pS and a channel density of approximately 1,000 channels/cell. The K current was blocked by tetraethylammonium or 4-aminopyridine with half maximal block occurring at concentrations of 1-2 mM for either blocker. K currents were unaffected by two blockers of Ca2+-activated K channels, charybdotoxin and apamin. Bath-applied norepinephrine did not affect the K currents or other membrane currents under our experimental conditions. These properties of the K channels indicate that they could produce an increase in the K+ permeability of the brown fat cell membrane during the depolarization that accompanies norepinephrine-stimulated thermogenesis, but that they do not contribute directly to the norepinephrine-induced depolarization.  相似文献   

20.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号