首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Until very recently, mitochondria were thought to be clonally inherited through the maternal line in most higher animals. However, three papers published in 2000 claimed population-genetic evidence of recombination in human mitochondrial DNA. Here I review the current state of the debate. I review the evidence for the two main pathways by which recombination might occur: through paternal leakage and via a mitochondrial DNA sequence in the nuclear genome. There is no strong evidence for either pathway, although paternal leakage seems a definite possibility. However, the population-genetic evidence, although not conclusive, is strongly suggestive of recombination in mitochondrial DNA. The implications of non-clonality for our understanding of human and mitochondrial evolution are discussed.  相似文献   

2.
A fast purification procedure for the isolation and purification of eukaryotic porin (De Pinto et al., (1987) Biochim. Biophys. Acta 905, 499-502) was applied to liver mitochondria of the fish Anguilla anguilla. A protein preparation was obtained which formed slightly anionically selective pores in reconstitution experiments with lipid bilayer membranes. The distribution of single-channel conductances had two maxima of 2.4 nS and 4.0 nS in 1 M KCl. Sodium dodecylsulfate electrophoretograms of the protein preparation showed the presence of two bands of very similar electrophoretic mobility (32 and 32.5 kDa). Both bands cross-reacted with antibodies raised against purified bovine heart porin and with antibodies raised against the 19 amino acids N-terminal end of human porin. No cross-reactivity was observed with antibodies against yeast porin. The peptide maps of the two bands showed slight differences. The possibility of the presence of two different porins in liver mitochondria of Anguilla anguilla is discussed. An extensive immunological comparison of different mitochondrial porins is presented.  相似文献   

3.
Infanticide by primate males was considered rare if groups contain more than one adult male because, owing to lower paternity certainty, a male should be less likely to benefit from infanticide. Guided by recent evidence for strong variation of infanticide in primate multi-male groups, we modelled the conditions for when infanticide should occur for a group with a resident and an immigrant male. Setting the parameters (e.g. infant mortality, reduction of interbirth interval, life-time reproductive success, genetic representation) to fit the conditions most commonly found in nature, we develop a game-theoretic model to explore the influence of age and dominance on the occurrence of infanticide and infant defence. Male age strongly impacts the likelihood of an attack which is modified by the father's defence. If the new male is dominant he is likely to attack under most circumstances whereas a subordinate male will only attack if the father does not defend. These model scenarios fit the conditions under which infanticide is known to occur in primate multi-male groups and offer an explanation why infanticide is common in some multi-male groups and rare in others. Overall, the benefits for infanticidal males are strongly governed by a reduced interbirth interval while advantages via improved genetic representation in the gene pool contribute but a minor fraction.  相似文献   

4.
Metabolism in cancer cells is rewired to generate sufficient energy equivalents and anabolic precursors to support high proliferative activity. Within the context of these competing drives aerobic glycolysis is inefficient for the cancer cellular energy economy. Therefore, many cancer types, including colon cancer, reprogram mitochondria-dependent processes to fulfill their elevated energy demands. Elevated glycolysis underlying the Warburg effect is an established signature of cancer metabolism. However, there are a growing number of studies that show that mitochondria remain highly oxidative under glycolytic conditions. We hypothesized that activities of glycolysis and oxidative phosphorylation are coordinated to maintain redox compartmentalization. We investigated the role of mitochondria-associated malate–aspartate and lactate shuttles in colon cancer cells as potential regulators that couple aerobic glycolysis and oxidative phosphorylation. We demonstrated that the malate–aspartate shuttle exerts control over NAD+/NADH homeostasis to maintain activity of mitochondrial lactate dehydrogenase and to enable aerobic oxidation of glycolytic l -lactate in mitochondria. The elevated glycolysis in cancer cells is proposed to be one of the mechanisms acquired to accelerate oxidative phosphorylation.  相似文献   

5.
The tumor suppressor ARF carries out different functions in different cellular compartments. In the nucleus, ARF interacts physically and functionally with Mdm2 to inhibit cell cycle progression through activation of p53. In the nucleolus, ARF interacts with B23/NPM to inhibit ribosomal biogenesis through control of rRNA processing. Recent studies have expanded ARF's territory into the mitochondria. New data have shown that ARF interacts with the mitochondrial protein p32/C1QBP and that the interaction is critical in order for ARF to localize to the mitochondria and induce apoptosis. Remarkably, the ARF-p32 interaction, and hence ARF's pro-apoptotic function, can be interrupted by human cancer-derived mutations in exon2 of the p14ARF-p16INK4a gene locus. Here, we discuss the implications of these studies and their potential relevance to human cancer.  相似文献   

6.
Ernoult-Lange M  Bénard M  Kress M  Weil D 《Biochimie》2012,94(7):1572-1577
Micro-RNAs (miRNAs) are major actors of RNA interference (RNAi), a regulation pathway which leads to translational repression and/or degradation of specific mRNAs. They provide target specificity by incorporating into the RISC complex and guiding its binding to mRNA. Since the discovery of RNAi, many progresses have been made on the mechanism of action of the RISC complex and on the identification of target mRNAs. However, the regulation of RNAi has been poorly investigated so far. Recently, various studies have revealed physical and functional relationships between RNAi, P-bodies and mitochondria. This review intends to recapitulate these data and discuss their potential importance in cell metabolism.  相似文献   

7.
《BBA》2006,1757(5-6):590-595
Opening of the permeability transition pore (PTP), a high-conductance mitochondrial channel, causes mitochondrial dysfunction with Ca2+ deregulation, ATP depletion, release of pyridine nucleotides and of mitochondrial apoptogenic proteins. Despite major efforts, the molecular nature of the PTP remains elusive. A compound library screening led to the identification of a novel high affinity PTP inhibitor (Ro 68-3400), which labeled a ∼32 kDa protein that was identified as isoform 1 of the voltage-dependent anion channel (VDAC1) [A.M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M.A. Forte, P. Bernardi, J.A. Kemp, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem. 278 (2003) 49812–49818]. In order to assess the role of VDAC1 in PTP formation and activity, we have studied the properties of mitochondria from VDAC1−/− mice. The basic properties of the PTP in VDAC1−/− mitochondria were indistinguishable from those of strain-matched mitochondria from wild-type CD1 mice, including inhibition by Ro 68-3400, which labeled identical proteins of 32 kDa in both wild-type and VDAC1−/− mitochondria. The labeled protein could be separated from all VDAC isoforms. While these results do not allow to exclude that VDAC is part of the PTP, they suggest that VDAC is not the target for PTP inhibition by Ro 68-3400.  相似文献   

8.
Mitochondrial alterations are critically involved in increased vulnerability to disease during aging. We investigated the contribution of mitochondria–sarcoplasmic reticulum (SR) communication in cardiomyocyte functional alterations during aging. Heart function (echocardiography) and ATP/phosphocreatine (NMR spectroscopy) were preserved in hearts from old mice (>20 months) with respect to young mice (5–6 months). Mitochondrial membrane potential and resting O2 consumption were similar in mitochondria from young and old hearts. However, maximal ADP-stimulated O2 consumption was specifically reduced in interfibrillar mitochondria from aged hearts. Second generation proteomics disclosed an increased mitochondrial protein oxidation in advanced age. Because energy production and oxidative status are regulated by mitochondrial Ca2+, we investigated the effect of age on mitochondrial Ca2+ uptake. Although no age-dependent differences were found in Ca2+ uptake kinetics in isolated mitochondria, mitochondrial Ca2+ uptake secondary to SR Ca2+ release was significantly reduced in cardiomyocytes from old hearts, and this effect was associated with decreased NAD(P)H regeneration and increased mitochondrial ROS upon increased contractile activity. Immunofluorescence and proximity ligation assay identified the defective communication between mitochondrial voltage-dependent anion channel and SR ryanodine receptor (RyR) in cardiomyocytes from aged hearts associated with altered Ca2+ handling. Age-dependent alterations in SR Ca2+ transfer to mitochondria and in Ca2+ handling could be reproduced in cardiomyoctes from young hearts after interorganelle disruption with colchicine, at concentrations that had no effect in aged cardiomyocytes or isolated mitochondria. Thus, defective SR–mitochondria communication underlies inefficient interorganelle Ca2+ exchange that contributes to energy demand/supply mistmach and oxidative stress in the aged heart.Age is the main independent risk factor for cardiovascular morbidity and mortality.1 It increases heart vulnerability to cardiac diseases as well as the severity of their clinical manifestations, and reduces the efficacy of cardioprotective interventions.2 At the cellular level, some of the structural and functional age-dependent changes resemble those of failing cardiac myocytes.3, 4 Specifically, disturbed Ca2+ homeostasis and excitation–contraction coupling,5 as well as deficient mitochondrial energetics6 and excessive ROS production,7 have been consistently reported in senescent cardiomyocytes. These subcellular alterations likely contribute to the reduced adaptive capacity to stress (exercise, β-adrenergic stimulation) and increased vulnerability to disease of the aged hearts.In cardiac cells, electrochemical coupling and metabolic adaptations are based upon the coordination between sarcoplasmic reticulum (SR) and mitochondria tightly interconnected forming an interface to support local ionic exchange and signal transduction in a beat-to-beat basis.8 This privileged interorganelle communication facilitates mitochondrial ATP transport for SR Ca2+ cycling and ensures energy replenishment by reciprocal Ca2+ and ADP exchange. Ca2+ is taken up by mitochondria using a low-affinity uniporter whose activity is driven by the elevated Ca2+ concentration in the microenvironment present around ryanodine receptors (RyR).9 Indeed, the kinetics of mitochondrial Ca2+ uptake is more dependent on the concentration of Ca2+ at the SR–mitochondria contact points than on bulk cytosolic Ca2+ concentration.8 Mitochondrial Ca2+ uptake allows energy supply–demand matching through the activation of Krebs cycle dehydrogenases and electron transport chain activity, and at the same time it regulates the regeneration of Krebs-coupled antioxidative defenses (NAD(P)H).10Defective SR–mitochondria cross talk has been causally linked to the abnormal mitochondrial Ca2+ uptake in failing hearts and may underlie their increased oxidative stress.11 Also, in diabetic cardiomyopathy, intracellular Ca2+ overload and depletion of energy stores appear to develop as a consequence of sequential SR–mitochondria dysfunction.12 Atrial fibrillation has been associated with an increased fusion of mitochondria and a subsequent increased colocalization of giant mitochondria with SR, a subcellular remodeling process that contributes to the perpetuation of the arrhythmia.13 Because mitochondria are highly dynamic structures, some molecular links have been proposed to provide a stable physical interorganelle bridge14, 15 while others appear to facilitate direct tunneling of Ca2+ and other signaling mediators.16 In the present study, we hypothesized that aging may negatively impact on mitochondria–SR communication by mechanisms involving defective Ca2+ transmission, and we identified reduced physical interaction between RyR and mitochondrial voltage-dependent anion channel (VDAC) as the main responsible of this effect.  相似文献   

9.
Using transmission electron microscopy, we investigated the ultrastructure of mitochondria in petal mesophyll cells of the orchid Dendrobium cv. Lucky Duan, from the time of floral opening to visible petal senescence. Cells close to the vascular bundle contained many mitochondria, some of which showed internal degeneration. This inner mitochondrial breakdown was accompanied by an eightfold increase in mitochondrial volume. Small electron-dense granules (approximately 0.04 μm in diameter) at the periphery of the mitochondrial matrix remained. These granules were used as an indicator of still later stages of mitochondrial development in these cells. The apparent final stage of mitochondrial degeneration was a single-membrane-bound vesicle, resembling a vacuole. No evidence was found for the idea that mitochondria became transferred (intact or degenerated) into a lytic vacuole. Taken together, the data suggest the hypotheses that (a) mitochondria in cells close to the vascular bundle in petals of open Dendrobium cv. Lucky Duan flowers undergo large-scale internal degeneration and that (b) such degenerating mitochondria form vacuole-like vesicles.  相似文献   

10.
11.
Somatic mutations of mitochondrial DNA have been detected in various pathologies such as cancer, neurodegenerative diseases, cardiac disorders and aging in general. Now it has been found that patients with rheumatoid arthritis also have a higher incidence of mitochondrial mutations in synoviocytes and synovial tissue compared with patients with osteoarthritis. Furthermore, it has been shown that these mutations possibly result in changed peptides that are presented by major histocompatibility complex II and thus might be recognized as non-self by the immune system. Further studies will show whether these mutations are actually able to trigger autoimmune inflammation in rheumatoid arthritis or whether they must be considered epiphenomena of cellular damage in chronic inflammation.  相似文献   

12.
13.
C. Masterson  C. Wood  D. R. Thomas 《Planta》1990,182(1):129-135
-Oxidation enzymes were detected both in the mitochondria and microbodies of Arum maculatum L. spadices and Brassica napus L. seeds. It is apparent that the mitochondrial membrane barrier, which remains intact after sucrose-density-gradient centrifugation, prevents rapid access of acyl-GoA substrates to matrix oxidation tes. Thus intact mitochondria showed little -oxidation enzyme activity. Rupturing of the mitochondrial membrane allowed rapid access of acyl CoAs to matrix sites. Consequently, in ruptured mitochondria, high -oxidation enzyme activities were measured.C. Masterson thanks the Science and Engineering Research Council for the award of a postgraduate student maintenance grant. D.R. Thomas and C. Wood thank their relatives for continuing financial support. The authors also thank West Cumberland Farmers Ltd., Hexham, UK for their gift of oilseed rape seeds.  相似文献   

14.
15.
Increase in maximal respiration rate of uncoupled mitochondria in response to increase in concentration of non-penetrating buffer has been demonstrated. This phenomenon did not depend on chemical structure of uncouplers and composition of the non penetrating buffer. Use of covalently attached pH probe, FITC, revealed that at low buffer concentration (3 mM) the H+-pump functioning results in local increase in proton concentration on the outer surface of the inner mitochondrial membranes. In other words, local H+ gradient was generated. Increase in buffer concentration up to 20 mM caused sharp decrease in this gradient, which occurred in parallel to increase in the respiration rate. It is concluded that both effects described here may be attributed to the process of proton transfer through the interfaces of the mitochondrial membrane: the rate of respiratory H+ pumps of uncoupled mitochondria under conditions of low buffer capacity of medium is limited by the stage of proton release from outer surface of the coupling membrane. The inhibition mechanism of respiration by high concentrations of uncouplers is also discussed.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 240–245.Original Russian Text Copyright © 2005 by Yurkov, Fadeeva, Yaguzhinsky.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

16.
17.
Mitochondria can import proteins from the cytoplasm at sites where the two mitochondrial membranes are closely apposed. However, each of these membranes contains a distinct protein translocation channel. Recent evidence suggests that the two types of channel are not permanently coupled, but may dissociate in a reversible manner. This reversible interaction is probably essential for intramitochondrial sorting proteins.  相似文献   

18.
Further studies of the transaminase responsible for the first committed step in alkaloid formation in Conium maculatum have shown the L-alanine: 5-ketooctanal transaminase to occur in both the mitochondria and chloroplast. Experiments suggest that these enzymes are the isoenzymes Transaminase A and B respectively previously isolated by the author. It is suggested that the chloroplast enzyme is normally responsible for alkaloid production.  相似文献   

19.
The intercalary meristem and surrounding tissues of the gene induced plastome mutant albostrians of Hordeum vulgare L. were examined in the electron microscope for ultrastructural evidence of membrane continuities between plastids and mitochondria. In well developed tissues the ribosome-deficient plastids were usually in close proximity or appressed to mitochondria of normal appearance. In some sections through the meristemmatic region however the relationship between the two organelles was observed to be of a fused nature. These conjoinings are thought to be similar to those reported in normal living cells using cinephotomicrography but never before observed by transmission electron microscopy.  相似文献   

20.
Higher eukaryotes, including mammals and plants, express a family of VDAC proteins each encoded by a distinct gene. Two human genes encoding VDAC isoforms (HVDAC1 and HVDAC2) have been characterized in greatest detail. These genes generate three proteins that differ primarily by the addition of distinct N terminal extensions in HVDAC2 and HVDAC2, a splice variant of HVDAC2, relative to HVDAC1. Since N terminal sequences have been demonstrated to target many proteins to appropriate subcellular compartments, this observation raises the possibility that the N terminal differences found in HVDAC isoforms may lead to targeting of each protein to different cellular locations. Consistent with this hypothesis, a large number of reports have provided evidence consistent with the notion that HVDAC1 and its homolog in related mammalian species may specifically be present in the plasma membrane or other nonmitochondrial cellular compartments. Here, we review this information and conclude that if VDAC molecules are present at nonmitochondrial locations in mammalian cells, these are unlikely to be the known products of the HVDAC1 or HVDAC2 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号