首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MAGUKs (membrane-associated guanylate kinase homologues) constitute a family of peripheral membrane proteins that function in tumor suppression and receptor clustering by forming multiprotein complexes containing distinct sets of transmembrane, cytoskeletal, and cytoplasmic signaling proteins. Here, we report the characterization of the human vam-1 gene that encodes a novel member of the p55 subfamily of MAGUKs. The complete cDNA sequence of VAM-1, tissue distribution of its mRNA, genomic structure, chromosomal localization, and Veli-1 binding properties are presented. The vam-1 gene is composed of 12 exons and spans approx. 115 kb. By fluorescence in situ hybridization the vam-1 gene was localized to 7p15-21, a chromosome region frequently disrupted in some human cancers. VAM-1 mRNA was abundant in human testis, brain, and kidney with lower levels detectable in other tissues. The primary structure of VAM-1, predicted from cDNA sequencing, consists of 540 amino acids including a single PDZ domain near the N-terminus, a central SH3 domain, and a C-terminal GUK (guanylate kinase-like) domain. Sequence alignment, heterologous transfection, GST pull-down experiments, and blot overlay assays revealed a conserved domain in VAM-1 that binds to Veli-1, the human homologue of the LIN-7 adaptor protein in Caenorhabditis. LIN-7 is known to play an essential role in the basolateral localization of the LET-23 tyrosine kinase receptor, by linking the receptor to LIN-2 and LIN-10 proteins. Our results therefore suggest that VAM-1 may function by promoting the assembly of a Veli-1 containing protein complex in neuronal as well as epithelial cells.  相似文献   

2.
The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.  相似文献   

3.
Mutations in the gene for guanylate cyclase-activating protein-1 (GCAP1) (GUCA1A) have been associated with autosomal dominant cone dystrophy (COD3). In the present study, a severe disease phenotype in a large white family was initially shown to map to chromosome 6p21.1, the location of GUCA1A. Subsequent single-stranded conformation polymorphism analysis and direct sequencing revealed an A464G transition, causing an E155G substitution within the EF4 domain of GCAP1. Modeling of the protein structure shows that the mutation eliminates a bidentate amino acid side chain essential for Ca2+ binding. This represents the first disease-associated mutation in GCAP1, or any neuron-specific calcium-binding protein within an EF-hand domain, that directly coordinates Ca2+. The functional consequences of this substitution were investigated in an in vitro assay of retinal guanylate cyclase activation. The mutant protein activates the cyclase at low Ca2+ concentrations but fails to inactivate at high Ca2+ concentrations. The overall effect of this would be the constitutive activation of guanylate cyclase in photoreceptors, even at the high Ca2+ concentrations of the dark-adapted state, which may explain the dominant disease phenotype.  相似文献   

4.
The discs large (Dlg) protein, or synapse-associated protein 97 (SAP97), is a member of the membrane-associated guanylate kinase family of multidomain scaffolding proteins which recruits transmembrane and signaling molecules to localized plasma membrane sites. Murine dlg is the homologue of the Drosophila dlg tumor suppressor gene. The loss of dlg function in Drosophila disrupts cellular growth control, apicobasal polarity, and cell adhesion of imaginal disc epithelial cells, resulting in embryonic lethality. In this study, we isolated a mutational insertion in the murine dlg locus by gene trapping in totipotent embryonic stem cells. This insertion results in a truncated protein product that contains the N-terminal three PSD-95/DLG/ZO-1 domains of Dlg fused to the LacZ reporter and subsequently lacks the src homology 3 (SH3), protein 4.1 binding, and guanylate kinase (GUK)-like domains. The Dlg-LacZ fusion protein is expressed in epithelial, mesenchymal, neuronal, endothelial, and hematopoietic cells during embryogenesis. Mice homozygous for the dlg mutation exhibit growth retardation in utero, have hypoplasia of the premaxilla and mandible, have a cleft secondary palate, and die perinatally. Consistent with this phenotype, Dlg-LacZ is expressed in mesenchymal and epithelial cells throughout palatal development. Our genetic and phenotypic analysis of dlg mutant mice suggests that protein-protein interactions involving the SH3, protein 4.1 binding, and/or GUK-like domains are essential to the normal function of murine Dlg within craniofacial and palatal morphogenesis.  相似文献   

5.
Alterations of the Bruton's tyrosine kinase(Btk) gene are responsible for X-linked agammaglobulinemia (XLA). Although mutations in various regions were reported mainly in the Caucasian population, correlation between the locations of mutation and the clinical phenotypes remains unclear. We report 12 abnormalities of theBtk gene found in 12 unrelated families out of 14 XLA families in Japan and their clinical features. We utilized Southern blotting and single-strand conformation polymorphism (SSCP) analysis. Gene rearrangement in the kinase domain was identified in two patients by Southern blotting. Seven point mutations, two small deletions, and one small insertion were detected by SSCP and sequencing. The SSCP analysis also provided information about the carriers in these families. We found some clinical heterogeneity in the affected family members with the same gene mutation. Moreover, there is considerable inconsistency between the locations of gene aberrations and the immunological phenotypes. Some patients with a nonsense mutation, which may result in the lack of kinase domain, have detectable B cells and immunoglobulins. These identified alterations will provide valuable clues to theBtk protein function and the pathogenesis of XLA.  相似文献   

6.
hDlg is the human homolog of the Drosophila Discs-large tumor suppressor. As a member of the MAGUK (membrane-associated guanylate kinase) family of scaffolding proteins, hDlg is composed of three PDZ (PSD-95, Dlg, and ZO-1) repeats, an SH3 (Src homology 3) motif, and a GUK (guanylate kinase-like) domain. Additionally, hDlg contains two regions of alternative splicing. Here we identify a novel insertion, I1B, located N-terminal to the PDZ repeats. We further analyze the tissue-specific combinations of insertions and correlate those results with the distribution of protein isoforms. We also identify the functions of the two alternatively spliced regions. The N-terminal alternatively spliced region is capable of binding several SH3 domains and also moderates the level of protein oligomerization. Insertions in the second region are responsible for determining the localization of hDlg, with insertion I3 targeting the protein to the membrane regions of cell-cell contact and insertion I2 targeting the protein to the nucleus.  相似文献   

7.
8.
The high frequency of chromosomal nondisjunction in human germ cells impacts society in many ways. Yet, the etiology of chromosome disorders remains unclear. Using a zebrafish strain with a hypomorphic mutation in the kinase Mps1, a genetic association between reduced germ cell mitotic checkpoint activity and aneuploid progeny was recently established. This work highlights the exquisite sensitivity of vertebrate germ cells to disruptions in Mps1 function and mitotic checkpoint activity. In addition, it introduces the zebrafish as a promising tool with which to further investigate the origins of aneuploidy.  相似文献   

9.
The tyrosine protein kinase p56lck transduces signals important for antigen-induced T-cell activation. In transgenic mice, p56lck is oncogenic when overexpressed or expressed as a mutant, catalytically activated enzyme. In humans, the LCK gene is located at the breakpoint of the t(1;7)(p34;q34) chromosomal translocation. This translocation positions the beta T-cell receptor constant region enhancer upstream of the LCK gene without interrupting the LCK coding sequences, and a translocation of this sort occurs in both the HSB2 and the SUP-T-12 T-cell lines. We have found that, although the level of the p56lck protein in HSB2 cells is elevated approximately 2-fold in comparison with that in normal T-cell lines, total cellular tyrosine protein phosphorylation is elevated approximately 10-fold. Increased levels of phosphotyrosine in HSB2 cells resulted from mutations in the LCK gene that activated its function as a phosphotransferase and converted it into a dominant transforming oncogene. The oncogenic p56lck in HSB2 cells contained one amino acid substitution within the CD4/CD8-binding domain, two substitutions in the kinase domain, and an insertion of Gln-Lys-Pro (QKP) between the SH2 and kinase domains. In NIH 3T3 fibroblasts, three of these mutations cooperated to produce the fully oncogenic form of this p56lck variant. These results suggest that mutation of LCK may contribute to some human T-cell leukemias.  相似文献   

10.
FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.  相似文献   

11.
12.
We report the first example of a gene, hmp, encoding a soluble flavohemoglobin in Escherichia coli K-12, which is up-regulated by paraquat in a SoxRS-independent manner. Unlike what is found for other paraquat-inducible genes, high concentrations of paraquat (200 microM) were required to increase the level of hmp expression, and maximal induction was observed only after 20 min of exposure to paraquat. Neither a mutation in soxS nor one in soxR prevented the paraquat-dependent increase in phi(hmp-lacZ) expression, but either mutant allele delayed full expression of phi(hmp-lacZ) activity after paraquat addition. Induction of hmp by paraquat was demonstrated in aerobically grown cultures during exponential growth and the stationary phase, thus revealing two Sox-independent regulatory mechanisms. Induction of hmp by paraquat in the stationary phase was dependent on the global regulator of stationary-phase gene expression, RpoS (sigma S). However, a mutation in rpoS did not prevent an increase in hmp expression by paraquat in exponentially growing cells. Induction of sigma S in the exponential phase by heat shock also induced phi(hmp-lacZ) expression in the presence of paraquat, supporting the role of sigma S in one of the regulatory mechanisms. Mutations in oxyR or rob, known regulators of several stress promoters in E. coli, had no effect on the induction of hmp by paraquat. Other known superoxide-generating agents (plumbagin, menadione, and phenazine methosulfate) were not effective in inducing hmp expression.  相似文献   

13.
Mevalonic aciduria is the first proposed inherited disorder of the cholesterol/isoprene biosynthetic pathway in humans, and it is presumed to be caused by a mutation in the gene coding for mevalonate kinase. To elucidate the molecular basis of this inherited disorder, a 2.0-kilobase human mevalonate kinase cDNA clone was isolated and sequenced. The 1188-base pair open reading frame coded for a 396-amino acid polypeptide with a deduced M(r) of 42,450. The predicted protein sequence displayed similarity to those of galactokinase and the yeast RAR1 protein, indicating that they may belong to a common gene family. Southern hybridization studies demonstrated that the mevalonate kinase gene is located on human chromosome 12 and is a single copy gene. No major rearrangements were detected in the mevalonic aciduria subject. The relative size (2 kilobases) and amounts of human mevalonate kinase mRNA were not changed in mevalonic aciduria fibroblasts. Approximately half of the mevalonic aciduria cDNA clones encoding mevalonate kinase contained a single base substitution (A to C) in the coding region at nucleotide 902 that changed an asparagine residue to a threonine residue. The presence of this missense mutation was confirmed by polymerase chain reaction amplification and allele-specific hybridization of the genomic DNAs from the proband and the proband's father and brother. Similar analysis failed to detect this mutation in the proband's mother, seven normal subjects, or four additional mevalonic aciduria subjects, indicating that the mutation does not represent a common gene polymorphism. Functional analysis of the defect by transient expression confirmed that the mutation produced an enzyme with diminished activity. Our data suggest that the index case is a compound heterozygote for a mutation in the mevalonate kinase gene.  相似文献   

14.
15.
Temperature-sensitive CHO-K1 mutant cell line tsTM18 exhibits chromosomal instability and cell cycle arrest at S and G2 phases with decreased DNA synthesis at the nonpermissive temperature, 39 degrees C. To identify the causative mutation, we fused tsTM18 cells with normal human cells to generate hybrids carrying fragments of human chromosomes. Analysis of chromosome content of temperature-resistant transformants and introduction of a bacterial artificial chromosome containing part of human chromosome 9 led to isolation of the human SMU1 gene. Comparison of sequences of the Smu1 gene from wild-type and mutant cells revealed that the mutant phenotype is caused by a G-to-A transition that yields a gly-to-arg substitution at position 489 in hamster Smu1. The substituted glycine is located in the WD-repeat domain of Smu1. Single-stranded DNA accumulated in the nuclei of mutant cells at 39 degrees C. Furthermore, cdc2 kinase was not activated during G2 phase, and there was no chromosome segregation due to incomplete assembly of the spindle during M phase. Thus, Smu1 appears to be involved directly or indirectly in DNA replication, activation of cdc2 kinase, spindle assembly, and maintenance of chromosome integrity, reflecting the important roles of Smu1 in cellular function.  相似文献   

16.
Membrane-associated guanylate kinases (MAGUKs) regulate cellular adhesion and signal transduction at sites of cell-cell contact. MAGUKs are composed of modular protein-protein interaction motifs including L27, PDZ, Src homology (SH) 3, and guanylate kinase domains that aggregate adhesion molecules and receptors. Genetic analyses reveal that lethal mutations of MAGUKs often occur in the guanylate kinase domain, indicating a critical role for this domain. Here, we explored whether GMP binding to the guanylate kinase domain regulates MAGUK function. Surprisingly, and in contrast to previously published studies, we failed to detect GMP binding to the MAGUKs postsynaptic density-95 (PSD-95) and CASK. Two amino acid residues in the GMP binding pocket that differ between MAGUKs and authentic guanylate kinase explain this lack of binding, as swapping these residues largely prevent GMP binding to yeast guanylate kinase. Conversely, these mutations restore GMP binding but not catalytic activity to PSD-95. Protein ligands for the PSD-95 guanylate kinase domain, guanylate kinase-associated protein (GKAP) and MAP1A, appear not to interact with the canonical GMP binding pocket, and GMP binding does not influence the intramolecular SH3/guanylate kinase (GK) interaction within PSD-95. These studies indicate that MAGUK proteins have lost affinity for GMP but may have retained the guanylate kinase structure to accommodate a related regulatory ligand.  相似文献   

17.
In mouse mammary tumors, the Wnt-3 gene can be activated by proviral insertion. Here we report on the isolation of a human homolog, WNT3. A genomic clone was isolated by use of mouse Wnt-3 sequences as a probe, after which cDNA containing most of the protein-encoding domain of the human gene was obtained by PCR. Comparison between the deduced mouse and human WNT-3 protein sequences showed four changes in 333 amino acids. WNT3 is located on chromosome 17q21. The gene was not found to be amplified or rearranged in a collection of human breast tumors.  相似文献   

18.
Akt (also known as PKB or RAC-PK) is an intracellular serine/threonine kinase involved in regulating cell survival. Although this makes it a promising target for the discovery of drugs to treat human cancer, a complicating factor may be the role played by Akt in insulin signalling. Two human isoforms, Akt-1 and Akt-2, have been described previously and a third isoform has been identified in rats (here termed Akt-3, but also called RAC-PK-gamma or PKB-gamma). We describe the identification of the corresponding human isoform of Akt-3. The gene encoding human Akt-3 was localized to chromosome 1q43-44. The predicted protein sequence is 83% identical to human Akt-1 and 78% identical to human Akt-2, and contains a pleckstrin homology domain and a kinase domain. In contrast to the published rat Akt-3 isoform, human and mouse Akt-3 also possess a C-terminal 'tail' that contains a phosphorylation site (Ser472) thought to be involved in the activation of Akt kinases. In addition to phosphorylation of Ser472, phosphorylation of Thr305 also appears to contribute to the activation of Akt-3 because mutation of both these residues to aspartate increased the catalytic activity of Akt-3, whereas mutation to alanine inhibited activation. Akt-3 activity could be inhibited by the broad spectrum kinase inhibitor staurosporine and by the PKC inhibitor Ro 31-8220, but not by other PKC or PKA inhibitors tested. Although Akt-3 is expressed widely, it is not highly expressed in liver or skeletal muscle, suggesting that its principle function may not be in regulating insulin signalling. These observations suggest that Akt-3 is a promising target for the discovery of novel chemotherapeutic agents which do not interfere with insulin signalling.  相似文献   

19.
We have identified a large multigenerational Austrian family displaying a novel form of X-linked recessive myopathy. Affected individuals develop an adult-onset scapulo-axio-peroneal myopathy with bent-spine syndrome characterized by specific atrophy of postural muscles along with pseudoathleticism or hypertrophy and cardiac involvement. Known X-linked myopathies were excluded by simple-tandem-repeat polymorphism (STRP) and single-nucleotide polymorphism (SNP) analysis, direct gene sequencing, and immunohistochemical analysis. STRP analysis revealed significant linkage at Xq25-q27.1. Haplotype analysis based on SNP microarray data from selected family members confirmed this linkage region on the distal arm of the X chromosome, thereby narrowing down the critical interval to 12 Mb. Sequencing of functional candidate genes led to the identification of a missense mutation within the four and a half LIM domain 1 gene (FHL1), which putatively disrupts the fourth LIM domain of the protein. Mutation screening of FHL1 in a myopathy family from the UK exhibiting an almost identical phenotype revealed a 3 bp insertion mutation within the second LIM domain. FHL1 on Xq26.3 is highly expressed in skeletal and cardiac muscles. Western-blot analysis of muscle biopsies showed a marked decrease in protein expression of FHL1 in patients, in concordance with the genetic data. In summary, we have to our knowledge characterized a new disorder, X-linked myopathy with postural muscle atrophy (XMPMA), and identified FHL1 as the causative gene. This is the first FHL protein to be identified in conjunction with a human genetic disorder and further supports the role of FHL proteins in the development and maintenance of muscle tissue. Mutation screening of FHL1 should be considered for patients with uncharacterized myopathies and cardiomyopathies.  相似文献   

20.
The SLC2A10 gene located on chromosome 20q13.1 encodes the facilitative glucose transporter 10 (GLUT10), a class III member of the SLC2A facilitative glucose transporter family. Mutations in the human SLC2A10 gene cause arterial tortuosity syndrome (ATS), a rare autosomal recessive connective tissue disorder. In this work, we report the characterization of the slc2a10 ortholog gene in zebrafish (Danio rerio) and its expression pattern during embryonic development and in adult tissues. The slc2a10 gene consists of 5 exons, spanning 8 kb and mapping to a region on chromosome 11 that exhibits conserved synteny with human chromosome 20. The gene encodes Glut10, a 513 amino acid protein that maintains the 12 transmembrane domain structure typical of the GLUTs family, and shares the specific functional motifs involved in sugar transport with the vertebrate GLUT10. RT-PCR analysis showed that two specific splice variants, both including the 5’-UTR region, were expressed during embryogenesis and in different adult zebrafish tissues and organs. In situ hybridization analyses demonstrated a maternal origin of the total slc2a10 mRNA and its ubiquitous distribution until the early somitogenesis stage. In later embryonic stages, slc2a10 mRNA was detected in the otic vesicles, hatching gland cells, pectoral fin, posterior tectum and swim bladder. Overall, these results suggest a wide role of slc2a10 during zebrafish development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号