首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Abstract Enterotoxigenic Escherichia coli (ETEC) strains which cause diarrhea in young pigs often possess the proteinaceous surface antigen, K88. The genetic determinants for production of K88 fimbriae and utilization of raffinose (Raf) are located on non-conjugative plasmids. We have examined some parameters of cointegrate formation between one of these plasmids, pPS900, and pPS030, a conjugative R factor. Cointegrate formation appears to be RecA-independent and to involve specific regions of both plasmids. Cointegrates are unstable, breaking down to form plasmid species indistinguishable from pPS030 and pPS900. Stable cointegrates have undergone a deletion which often includes all or part of the region of pPS900 encoding K88 antigen production.  相似文献   

2.
3.
4.
We inserted foreign DNA segments into plasmids which replicate by a rolling-circle mechanism in Escherichia coli and observed the appearance of high-molecular-weight plasmid multimers (HMW). This phenomenon, which occurs more frequently with GC-rich segments, depends on the mode of replication of the plasmid and on host homologous recombination functions. We found that (i) HMW are formed upon insertion of a foreign DNA segment into a single-stranded DNA plasmid, whereas the same DNA insert has no such effect on a theta replicon, and (ii) HMW are not present in a recA mutant strain but are found in a lexA (Ind-) mutant. Enzymatic studies allowed us to define the HMW structure as linear double-stranded tandem head-to-tail plasmid repeats. Use of heteroplasmid strains showed that HMW production by one plasmid does not affect another resident plasmid, indicating that no host functions are phenotypically inactivated. This distinguishes our system from the HMW observed with various replicons in the absence of RecBCD enzyme activity. We propose that the role of the foreign insert is to protect the DNA from RecBCD exonuclease attack.  相似文献   

5.
R483, an atypical, I pilus-determining plasmid, and also R144, a typical one, were shown to suppress the DnaA phenotype by integration into the Escherichia coli chromosome.  相似文献   

6.
7.
8.
Homology between Escherichia coli plasmids ColE1 and p15A.   总被引:1,自引:0,他引:1       下载免费PDF全文
The location and extent of the homology between plasmids ColE1 and p15A were determined by analysis of heteroduplexes formed between them as well as with a related plasmid, pBR322, and by hybridization of radioactive deoxyribonucleic acids to restriction fragments of p15A and ColE1. The homology between the plasmids contained the entire region of ColE1 required for its replication as well as an additional 400 base pairs downstream from the origin of replication. This region on p15A, which was 980 +/- 43 base pairs, started at 0.1 of the molecular length from one end formed by cleavage with the restriction endonuclease BglI and extended to 0.54 of the molecular length from the same end. Restriction cleavage maps for the enzymes BglI, HpaI, HaeII, HaeIII, and HincII are also presented.  相似文献   

9.
Biochemistry of homologous recombination in Escherichia coli.   总被引:51,自引:0,他引:51       下载免费PDF全文
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.  相似文献   

10.
11.
Summary Derivatives of plasmid pBR327 with the tet gene interrupted by 165 pb or 401 by direct repeats were constructed. In cells harboring these plasmids, deletions which restored the wild-type tet gene gave rise to tetracycline-resistant colonies, thereby allowing a simple phenotypic test for deletion formation. The frequencies of deletions in these plasmids were measured in Escherichia coli strains proficient or deficient in general recombination. The structure of plasmid DNA isolated from tetracycline-resistant transformants was analyzed by agarose gel electrophoresis, restriction mapping and sequencing. The data presented here demonstrate that deletion formation is always associated with dimerization of plasmid DNA. Dimeric plasmids were of two types. Those which carried both a deletion and a compensating duplication were the major type in a Rec+ background and were rare in recA, recF, recJ and recO backgrounds. Dimers of the second type contained deletions, but no compensating duplications, and their formation was RecA-independent. The data presented demonstrate that deletion formation mediated by long direct repeats is mainly the result of unequal crossing-over between two plasmid molecules.  相似文献   

12.
Deletion hot spots in chimeric Escherichia coli plasmids.   总被引:3,自引:0,他引:3       下载免费PDF全文
Deletions form frequently in chimeric plasmids composed of M13mp2, pBR322, and pC194 (B. Michel and S. D. Ehrlich, Proc. Natl. Acad. Sci. USA 83:3386-3390, 1986). They are generated by joining of the nucleotide neighboring the nick site in the M13 replication origin to a nonadjacent nucleotide. This nucleotide is most often located within particular short plasmid regions, named deletion hot spots. Three natural hot spots were present in the chimeric plasmids. Two were active only when the DNA replication initiated at the M13 origin was allowed to progress; the third was active only in the presence of wild-type amounts of DNA ligase. Three artificial hot spots were generated by creating palindromic sequences in the plasmids.  相似文献   

13.
Summary A set of plasmids containing 42, 21 and 13 bp direct repeats was used to analyze the effect of repeat length on the frequencies of deletion formation and the structure of the deleted derivatives of different recombination-deficient Escherichia coli strains. Agarose gel electrophoresis of plasmid DNA demonstrated that the formation of deletions in these plasmids was associated with dimerization of plasmid DNA. Restriction analysis of the dimers showed that deletions at short direct repeats arose non-conservatively, that is, the formation of a deletion in one monomeric plasmid unit was not associated with a duplication in the other. Mutations in the recA, recF, recJ and recO genes had no marked effect on either the frequencies of deletion formation or the structure of dimers. In contrast, recB recC mutations greatly increased the frequencies of deletion formation, 6-fold for 42 bp, and 115-fold for 21 by direct repeats. Conversion of DNA replication to the rolling circle mode in a recB recC strain, resulting in the formation of double-stranded ends, is suggested as the stimulatory effector.  相似文献   

14.
Aims: This work describes the effects of the presence of nonconjugative plasmids in Escherichia coli cells forming biofilms on a flow cell system under turbulent conditions. Methods and Results: The pET28 and pUC8 plasmids were separately used to transform E. coli JM109(DE3). Biofilm formation, removal and antimicrobial susceptibility to the cationic biocide benzyldimethyldodecylammonium chloride (BDMDAC) were assessed. Transformed cells formed thicker biofilms with higher cell densities, and the metabolic activity was higher whereas nontransformed cells had higher viabilities. Biocide treatment was not efficient for biofilm removal but was effective for cell killing. Biofilms formed by nontransformed cells were less affected by the treatment. Conclusions: Cell transformation with the tested plasmids has significant impacts on biofilm formation, cell viability, metabolic activity and resistance to biocide treatment. Our results show that in biofilm studies involving deletion/complementation experiments, a control with the strain carrying a plasmid devoid of the gene under investigation must be included so that the real effects of the genetic manipulation are not biased by the presence of the plasmid backbone. Significance and Impact of the Study: This is the first report where the presence of nonconjugative plasmids is assessed in flow conditions analysing biofilm formation, removal and antimicrobial susceptibility of high cell‐density biofilms.  相似文献   

15.
The replication patterns of several plasmids were measured simultaneously during the cell division cycle of Escherichia coli B/r. F plasmids harboring oriS, both oriS and oriV, pSC101, and pBR322 were found to replicate at all stages of the cell division cycle with kinetics which were indistinguishable from one another and clearly different from the periodic synthesis of the minichromosomes pAL49 and pAL70.  相似文献   

16.
Loss of plasmids during enrichment for Escherichia coli.   总被引:9,自引:5,他引:4       下载免费PDF全文
Enrichment with sodium lauryl sulfate and incubation at 44.5 degrees C resulted in a loss of plasmids and decreased efficiency in the recovery of pathogenic. Escherichia coli strains from foods.  相似文献   

17.
Shuttle plasmids for Escherichia coli and Clostridium perfringens.   总被引:7,自引:2,他引:5       下载免费PDF全文
Small plasmids which replicate in both Escherichia coli and Clostridium perfringens were made by recombining E. coli plasmid pBR322 with three different small (less than 4 kilobases) plasmids native to C. perfringens. Subsequently, two homologous, though distinct, tetracycline resistance determinants (tet) from other C. perfringens plasmids were cloned into them. Both tet systems made E. coli resistant to at least 5 micrograms of tetracycline per ml when resident on the shuttle plasmids. The shuttle vectors have been used to transform L-phase variants and autoplasts of C. perfringens. In the latter case, the intact transforming plasmid could be isolated from walled cells after cell wall regeneration. Reciprocal transformation experiments in which plasmid DNAs derived from E. coli or C. perfringens were used suggest that restriction barriers exist between these two organisms. The plasmids contain restriction enzyme recognition sites in locations which are useful for cloning experiments.  相似文献   

18.
19.
K. P. SCOTT AND H.J. FLINT. 1995. Strains of Escherichia coli originally isolated from the rumen of sheep were shown to be capable of exchanging a 60kb plasmid, conferring resistance to tetracycline and ampicillin, at low frequencies (below 10-6 per recipient) under anaerobic conditions in the presence of (a) autoclaved and clarified rumen fluid, (b) raw clarified rumen fluid, or (c) whole rumen fluid. Under anaerobic conditions the two rumen strains showed no inhibition of growth rate when 50 mmol 1-1 volatile fatty acids were added to LB medium at pH 7, although significant inhibition resulted with 100 mmol 1-1 VFA. The two rumen strains, and four strains from the pig gut, showed less inhibition of anaerobic growth by volatile fatty acids than did three laboratory strains examined for comparison. These findings indicate that plasmid transfer between certain E. coli strains can occur under conditions that closely simulate an anaerobic gut environment.  相似文献   

20.
We have studied the formation of spontaneous mutations on plasmids present In the monomeric and dimeric states in a recF strain of Escherichia coli. Two test systems were employed: (i) the precise excision of Tn5 from the tetA gene of the plasmid pBR322 and (ii) operator constitutive (Oc) mutations on the pBR322-derived plasmid pPY97. The rate of Oc mutations was increased by a factor of three when this plasmid was present in the dimeric state compared to the monomeric state and the Oc phenotype was caused by small deletions in the operator sequence. No apparent mutational hot-spot was found. The rate of Tn5 excision was increased on dimeric compared to monomeric plasmids. Excision from a dimeric plasmid usually resulted in two types of mutant plasmids; a dimeric plasmid, where the Tn5 had excised from one of the plasmid units, and a monomeric parental pBR322. A mechanism to account for this is suggested. Complementation tests revealed that the increased mutation rate on dimeric plasmids is the result of dimers being mutaphilic per se, rather than the result of a general, trans-acting increase in mutation rates of the host, induced by the presence of the dimeric plasmid. Furthermore, it was found that the rate of Tn5 excision from plasmids in the monomeric state was increased when the region carrying the inserted Tn5 was duplicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号