首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enthalpies of sublimation, DeltaH degrees (subl) and of solution in water, DeltaH degrees (sol) were determined for a series of crystalline 1,3-dimethyl-uracil derivatives substituted at the C5-ring carbon atom with alkyl groups (-C(n)H(2n+1), n = 2-4) and some of their C(5.6)-cyclooligomethylene analogues (-(CH2)(n)-, n = 3-5). From these data. enthalpies of hydration DeltaH degrees (hydr)= DeltaH degrees (sol) - DeltaH degrees (subl) were calculated and corrected for energies of cavity formation in pure liquid water in order to obtain enthalpies of interaction, DeltaH degrees (int) of the solutes with their hydration shells. The latter are discussed together with the recalculated DeltaH degrees (int) for variously methylated uracils, obtained previously according to a simplified correction procedure, in terms of perturbations in the energy and scheme of hydration of the diketopyrimidine ring brought about by alkyl substitution. It was found that each -CH2-group added with an alkyl substitution contributes favorably about -20 kJ mol(-1) toDeltaH degrees (int).This contribution is partially cancelled by the unfavorable contribution to DeltaH degrees (int) connected with removal of some water molecules bound in the first and subsequent hydration layers by an alkyl substituent. This is particularly evident on substitution at the polar side of the diketopyrimidine ring on which water molecules are expected to be bound specifically.  相似文献   

2.
Enthalpies of sublimation DeltaH(0)(subl) crystalline uracil, thymine and their methylated derivatives as well as of N,N-diethylthymine were determinated by the quartz-resonator method and mass spectrometry. Enthalpies of solution at infinite dilution DeltaH(0)(sol) in water of aBcylated compounds were obtained calorimetrically. Hence the calculated enthalpies of hydration: DeltaH(0)(hydrsubal) = DeltaH(0)(sol) - DeltaH(0)(subl), were corrected for energies of cavity formation in pure liquid water to yield enthalpies of interaction DeltaH(0)(sint) of the solutes with their hydration shells. For uracil DeltaH(0)(int) = -59.8 kJ mole(-1) was obtained in this way. This value decreased linearly on N-methyl substitution with a mean increment of about 6.5 kJ mole CH2(-1). After C(5) or C(6) ring substitution it increased by about 3 kJ. These results are discussed in connection with heat of dilution data and theoretical schemes of hydration.  相似文献   

3.
Apparent molar relative enthalpies of dilution φLof aqueous solutions of a series of alkylated diketopyrimidines: m1Ura, m1,32Ura, m1,32Thy, m1,3,63Ura and e1,32Thy were measured as a function of concentration of the solutes at three temperatures 298.15, 308.15 and 318.15 K. Dilution proved to be an endothermic process over the whole range of molalities m and temperatures studied for all compounds except the e1,32Thy solution, the dilution of which, with the exception of the lowest concentrations (m > 0.2–0.3) was an exothermic process. Partial molar relative enthalpies of dilution -L2(m) derived from φL(m) functions were analysed as if they were composed of two additive contributions: an endothermic one -L2, (m1) and an exothermic one 1.2, (mas0), owing to the presence in the solutions of a free monomer m1 or associated species mas, respectively. Partial molar heat capacities of the solutes, evaluated by differentiation of -L2(m) functions in respect to temperature, decreased with the rise of concentration in the order of the tendency of the solutes to stacking association. Changes in heat content and in heat capacity of solutions upon their dilution are interpreted in terms of involvement of hydrophobic hydration and association of the solutes.  相似文献   

4.
Apparent molar heat capacities phiC(p(1,3)) of uracil, thymine and a series of their alkylated derivatives: m(1)Ura,m(1,3)(2) Ura, m(1,3)(2)Thy, mi(1,3,6)(3)Ura, m(1,3)(2),e(5)Ura and e(1,3)(2)Thy in dilute aqueous solutions were measured in the temperature range of 293.15-388.15 K, using a differential adiabatic scanning microcalorimeter. They were found to lie (i) much higher than the estimated heat capacities C(p)(s) of solid compounds, (ii) comparable with the respective partial molar heat capacities at infinite dilution, C(o)(p2), and (iii) linearly related to the number nH of hydrogen atoms covalenuy bound to the solute molecules. The increment thus obtained DeltaC(o)(p2)=42.8 J mole(-1) K(-1)n(-1)(H) per each hydrogen atom at 298.15 K proved (i) to coincide closely with those found previously for homologous series of aliphatic amides and hydrocarbons, and (ii) to decrease with a rise of temperature. These findings imply the involvement of hydrophobic hydration of the solutes.  相似文献   

5.
6.
7.
8.
9.
10.
Direct evidence for the detection of intermediate radicals of nucleic acid constituents induced by ultrasound in argon-saturated aqueous solution is presented. The method of spin trapping with 3,5-dibromo-4-nitrosobenzene sulphonate, which is a water-soluble, non-volatile, aromatic nitroso spin trap, combined with ESR, was used for the detection of sonochemically induced radicals. Spin adducts were also generated by OH radicals produced by UV photolysis of aqueous solution containing H2O2. ESR spectra observed from these photolysis experiments were identical to those after sonolysis. The ESR spectra of the spin adducts suggest that the major spin-trapped radical of thymine and thymidine was the 5-yl radical, and that of cytosine, cytidine, uracil, and uridine was the 6-yl radical. To compare the radicals induced by sonolysis and photolysis, the decay of the ESR spectra of the thymine and thymidine spin adducts was investigated. The decay curves of thymine and thymidine after sonolysis indicated biphasic decay. However, after photolysis the spin adducts from both compounds showed very little decay. These results suggest that the observed spin adducts in the sonolysis of pyrimidine bases and nucleosides were formed by OH radical and H atom addition to the 5,6 double-bond.  相似文献   

11.
12.
B Wolf  S Hanlon 《Biochemistry》1975,14(8):1661-1670
The data and approach reported in paper I (Hanlon et al., 1975, preceding paper) have been used to calculate the fractional changes in secondary structure of calf thymus deoxyribonucleic acid which occur in aqueous solutions as a function of the concentration of NaCl, KCl, LiCl, CsCl, and NH4Cl. There is a continuous loss in the "B" character of the nucleic acid with concomitant production of the C and, in some instances, an A form, as well, as the salt concentration increases. Sedimentation velocity studies suggest that there is an accompanying change in the hydrodynamic characteristics of the DNA molecules, as well. Utilizing the existing hydration data in the literature (Hearst and Vinograd, 1961a,b; Hearst, 1965; Tunis and Hearst, 1968a; Cohen and Eisenberg, 1968; Falk et al., 1962, 1963a,b), we have found that a gradual loss of "B" character and a decrease in the frictional coefficient of DNA occur as the net hydration of DNA is reduced from the fully hydrated from (60-80 mol of H2O/mol of nucleotide) to values of ca. 12-14 mol of H2O/mol of nucleotide. Below that value, a more precipitous decrease in these properties occurs. Extrapolation of the linear relationship observed between the fractional B content and the net hydration in the latter regions yield values of ca. 18 mol of H2O/mol of nucleotide at 100% B and ca. 4 mol of H2O/mol of nucleotide at 0% B (i.e., 100% C or C + A) for the alkali metal salts of DNA. The ammonium salt retains somewhat more H2O in the C and A forms (ca. 7). These results together with the hydration site assignments of Falk et al. (1962, 1963a,b) are interpreted in terms of a hydration model for DNA in aqueous solution in which an intact primary hydration shell of ca. 18 mol of H2O/mol of nucleotide is required for the maintenance of the "B" conformation. Removal of all but those water molecules solvating the phosphate groups results in the conversion to the C forms, predominantly, with a small amount of A structure formed as well in some salts. The accompanying changes in the sedimentation coefficients suggest that the DNA molecule assumes a more compact and/or flexible form under these conditions in which it is mainly in the C and A structures. The combination of these two events which ensue upon dehydration create a polymeric structure which can be more easily packaged in biological systems.  相似文献   

13.
Solutions of nucleic acid bases, nucleosides and a nucleotide, saturated with either N2, N2O or O2, were irradiated and tested for mutagenicity towards Salmonella typhimurium, with and without pre-incubation. Irradiated solutions of the nucleic acid bases were all non-mutagenic. Irradiated solutions of the nucleosides showed mutagenicity in S. typhimurium TA100 (pre-incubation assay). Generally, the mutagenicity followed the order: N2O greater than N2 greater than O2. The results show that the formation of mutagenic radiolytic products is initiated by attack of mainly OH radicals on the 2-deoxy-D-ribose moiety of the nucleosides. With irradiated solutions of the nucleotide, thymidine-5'-monophosphate, no mutagenicity could be detected.  相似文献   

14.
Studies have been made of conformational parameters in co-crystal complexes and compounds of nucleic acid bases in which there is the possibility of formation of hetero-base-pairs. Using published data extracted from the Cambridge structural database, a total of 37 base-pairs were found, of which 25 were hetero-pairs and 12 homo-pairs. These base-pairs were subject to analysis to reveal hydrogen bond parameters, propeller twist, buckle and C1'-C1' separation (or a similar parameter if C1' atoms were not present). Hetero-pairs were found to show larger twists than homo-pairs, the magnitude of twist being unrelated to hydrogen bond parameters or buckle value. The propeller twisting is less pronounced in these nucleic acid bases than in nucleosides, but still has a significant magnitude. Propeller twisting in hetero-pairs is found to be larger than in homo-pairs. Hetero-pairs appear to be formed preferentially in competitive situations.  相似文献   

15.
To elucidate the role of certain atomic groups in the formation of the nucleic acid hydrate shell, we simulated the systems involving a base or a complementary pair (the base molecules are methylated in N9 of purines and in N1 of pyrimidines) and 25 water molecules using the Monte-Carlo method. All hydrophilic centers, except for N1 purines and N3 pyrimidines in complementary pairs, form hydrogen bonds (H-bonds) with water molecules. The mean numbers of H-bonds formed by different centers, and distributions of the geometric characteristics of these bonds, which appeared similar to those in crystals, have been calculated. The formation of bridges of one, two of three water molecules between hydrophilic centers was shown. The probabilities of formation of these bridges have been calculated.  相似文献   

16.
17.
The out-of-plane vibration modes of uracil, cytosine and their deuterated and methylated derivatives such as 1,5-dimethyluracil (1-methylthymine), I-methylcytosine, 5-methylcytosine and 1,5-dimethylcytosine have been computed. The calculated wave-numbers have been compared to the published Raman peak and infrared band positions observed for solid or aqueous samples. The calculations have been carried out on a non-redundant set of symmetrical coordinates and a valence force field has been used. Some characteristic modes located between 750 and 800 cm-1 found in the infrared spectra of 2-deoxycytidine, 2-deoxythymidine 5-monophosphate and polynucleotides containing cytosine and thymine bases can be interpreted from the calculated results on 1-methylthymine and 1-methylcytosine.  相似文献   

18.
Monte-Carlo simulation of the systems containing a stack of 6 complementary base pairs and 180 water molecules has been performed. Characteristic of the hydration shell structure in major and minor grooves has been found for the stacks of repeating A : U and G : C base pairs as well as alternating (A : U, U : A) and (G : C, C : G) ones. Probabilities of the formation of bridges, formed by 1, 2 and 3 water molecules, between hydrophilic centres of the bases have been estimated. One water molecule forms an H-bonded bridge between two adjacent hydrophilic centres with high probability if N...N, N...O or O...O distance between these centres is close to 4.3 A. Hydration shell structure was found to depend significantly on the stack sequence and configuration, while global hydration characteristics (average energy, the number of water-water and water-base H-bonds) are only slightly dependent on the stack sequence and configuration. For the stacks in A conformation the number of water molecules forming more than one H-bonds with the bases is greater in comparison with the stacks in B-like conformation. This result is discussed in connection with the concept of hydration economy during B to A transition.  相似文献   

19.
The partial molar heat capacities and volumes of some of the constituents of nucleic acids have been determined in water and 1 molal aqueous glucose and sucrose solutions in order to elucidate the nature of interactions occurring between various nucleic acid bases, nucleosides and the sugar (glucose and sucrose) molecules. The results have been explained in terms of the contributions from hydrophobic interactions, hydrophilic interactions and the hydrogen bonding between the solute and solvent molecules. The results have also been compared with those of amino acids and peptides in aqueous glucose and sucrose solutions.  相似文献   

20.
ESR and laser flash photolysis studies have determined a reasonable order of reactivity of nucleotides with triplet riboflavin (3Rb*) for the first time. ESR detection of triplet state reactivity of Rb with nucleoside, polynucleotide and DNA has been obtained simultaneously. In addition, ESR spin elimination measurement of the reactivity of 3Rb* with nucleotides in good accord with laser flash photolysis determination of the corresponding rate constants offers a simple and reliable method to detect the reactivities of nucleic acids and its components with photoexcited flavins. Kinetic, ESR and thermodynamic studies have demonstrated that Rb should be a strong endogenous photosensitizer capable of oxidizing all nucleic acid bases, and preferentially two purine nucleotides with high rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号