首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In many vertebrate nonmuscle cells, the microfilament subunit protein, actin, exists as two isoforms, called beta and gamma, whose sequences differ only in their amino-terminal regions. We have prepared a peptide antibody specifically reactive with the amino-terminal sequence of gamma actin. This antibody reacted with nonmuscle actin as determined by Western blots of SDS gels, and reacted with the gamma, but not the beta, nonmuscle actin isoform as shown by Western blots of isoelectric focusing gels. In immunofluorescence experiments, the gamma peptide antibody stained microfilament bundles, ruffled edges, and the contractile ring of a variety of cultured cells, including mouse L cells, which have previously been reported to contain only the beta actin isoform (Sakiyama, S., S. Fujimura, and H. Sakiyama, 1981, J. Biol. Chem., 256:31-33). Double immunofluorescence experiments using the gamma peptide antibody and an antibody reactive with all actin isoforms revealed no differences in isoform localization. Thus, at the level of resolution of light microscopy, we have detected the gamma actin isoform in all microfilament-containing structures in cultured cells, and have observed no subcellular sorting of the nonmuscle actin isoforms.  相似文献   

2.
Among six actin isoforms, α-skeletal and α-cardiac actins have similar amino acid components and are highly conserved. Although skeletal muscles essentially express α-skeletal actins in the adult tissue, α-cardiac isoform actin is prominent in the embryonic muscle tissue. Switching of actin isoforms from α-cardiac to α-skeletal actin occurs during skeletal muscle differentiation. The cardiac type α-actin is expressed in the regeneration and patho-physiological states of the skeletal muscles as well. In the present study, we demonstrate the morphological switching of α-type actin isoforms from α-cardiac to α-skeletal actin in vitro using mouse ES cells for the first time. Immunofluorescent double staining with two specific antibodies revealed that α-cardiac actin appeared first in myoblasts. After cell fusion to form myotubes, the cardiac type actin decreased and α-skeletal actin conversely increased. Finally, the α-skeletal isoform remained as a main actin component in the fully mature skeletal muscle fibers. The exchange of isoforms is not directly linked to the sarcomere formation. As a result, ES cells provide a useful in vitro system for exploring skeletal muscle differentiation.  相似文献   

3.
4.
A procedure was developed to determine the percentage of skeletal muscle actin and cardiac actin present in different striated muscle tissues. The method was applied to 2 mg of actin mixtures isolated from various origins. All samples show simultaneous expression of both striated muscle isoactins, with the cardiac actin being the major form (congruent to 80%) in 11-day-old chick embryonic leg muscle, decreasing to approximately 50% values in the late fetal stage of chicken, mouse, and in fused mouse muscle cell cultures and becoming the minor species (less than 5%) in adult skeletal muscle tissues. We also find a significant amount (up to 20%) of the skeletal muscle isoform in adult heart (ventricle) of porcine, bovine, and human origin and no differences in muscle actin ratios in human atrium and ventriculum cells. Similarly, no significant variation in the actin ratios was observed between a normal heart and a heart from a patient with hereditary obstructive myopathy. For those cells and tissues where comparison with levels of mRNA was possible we mostly find a good correlation between the relative ratios of expression of cardiac and skeletal actin proteins and mRNAs.  相似文献   

5.
Skeletal muscle regeneration in adults is thought to occur through the action of myogenic satellite cells located in close association with mature muscle fibers; however, these precursor cells have not been prospectively isolated, and recent studies have suggested that additional muscle progenitors, including cells of bone marrow or hematopoietic origin, may exist. To clarify the origin(s) of adult myogenic cells, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of myofiber-associated cells capable at the single cell level of generating myogenic colonies at high frequency. Importantly, although muscle-engrafted cells from marrow and/or circulation localized to the same anatomic compartment as myogenic satellite cells and expressed some though not all satellite cell markers, they displayed no intrinsic myogenicity. Together, these studies describe the clonal isolation of functional adult myogenic progenitors and demonstrate that these cells do not arise from hematopoietic or other bone marrow or circulating precursors.  相似文献   

6.
Myogenic cells from regenerating adult rat muscle were compared in culture with embryonic myoblasts. No differences were found in their growth rates or fusion characteristics. Embryonic and regenerating cells fused with one another to form mosaic myotubes. Both showed the same increase in creatine kinase activity and shift in isozyme profile following fusion. These results support the view that myogenic cells from regenerating muscle are essentially the same as embryonic myoblasts.  相似文献   

7.
8.
We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.  相似文献   

9.
At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle.  相似文献   

10.
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha- skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.  相似文献   

11.
Summary Myosin and actin were localized by indirect immunofluorescence microscopy using specific antibodies prepared in rabbits against highly purified gizzard myosin and actin. A strong fluorescence staining with both antibodies was observed in rat corneal epithelial cells, anterior lens epithelial cells, rod inner segments, and in rat and frog pigment epithelial cells. The immunohistochemical localization of myosin in corneal epithelial cells was further supported by the electrophoretic and immunological identification of smooth muscle type myosin heavy chain in pure corneal epithelial abrasions. Electron-microscopic observations revealed a clear correlation between staining with actin antibodies and the presence of numerous thin cytoplasmic filaments (50–80 Å in diameter). The functional and biochemical nature of 90–110 Å filaments occurring in corneal and lens epithelial cells, as well as the ultrastructural localization of myosin in ocular nonmuscle cells under study remains obscure.  相似文献   

12.
Summary Myofibrillogenesis was studied in cultured chick cardiomyocytes using indirect immunofluorescence microscopy and antibodies against - and -actin, muscle and nonmuscle tropomyosin, muscle myosin, and titin. Initially, cardiomyocytes, devoid of myofibrils, developed variable numbers of stress fiber-like structures with uniform staining for anti-muscle and nonmuscle actin and tropomyosin, and diffuse, weak staining with anti-titin. Anti-myosin labeled bundles of filaments that exhibited variable degrees of association with the stress fiber-like structures. Myofibrillogenesis occurred with a progressive, and generally simultaneous, longitudinal reorganization of stress fiber-like structures to form primitive sarcomeric units. Titin appeared to attain its mature pattern before the other major contractile proteins. Changes in the staining patterns of actin, tropomyosin, and myosin as myofibrils matured were interpreted as due to longitudinal filament alignment occurring before ordering in the axial direction. Non-muscle actin and tropomyosin were found with sarcomeric periodicity in the initial stages of sarcomere myofibrillogenesis, although their staining patterns were not identical. The localization of the sarcomeric proteins -actin and muscle tropomyosin in stress fiber-like structures and the incorporation of non-muscle proteins in the initial stages of sarcomere organization bring into question the meaning of sarcomeric proteins in regard to myofibrillogenesis.  相似文献   

13.
We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structurebound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several mum in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including "discoidal" vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.  相似文献   

14.
The heterotetrameric sarcoglycan complex, composed of alpha-, beta-, gamma-, and delta-sarcoglycans, is an important component of the dystrophin-associated glycoprotein assembly in striated muscle. Mutations in any of the four genes encoding sarcoglycans cause a deficiency in all sarcoglycans in the sarcolemma and produce one of four types of limb-girdle muscular dystrophy. A fifth widely expressed sarcoglycan, epsilon-sarcoglycan, has been recently described. epsilon-Sarcoglycan is homologous to alpha-sarcoglycan, but whether it associates with the other sarcoglycans in muscle is not known. In this study, we use wild type and alpha-sarcoglycan-deficient mice to analyze the localization and association of sarcoglycans in skeletal muscle in vivo. The amounts of beta-, gamma-, and delta-sarcoglycans are reduced in alpha-sarcoglycan mutants, whereas the amount of epsilon-sarcoglycan is unchanged. We show here that epsilon-sarcoglycan is complexed with beta-, gamma-, and delta-sarcoglycans in both wild type and alpha-sarcoglycan mutant mice. We also use C2C12 myocytes to study the temporal expression and organization of sarcoglycan complexes during muscle cell differentiation in vitro. In C2C12 cells, alpha- and epsilon-sarcoglycans form separate complexes with beta-, gamma-, and delta-sarcoglycans. Both types of complexes are expressed at the cell surface and presumed to be functional. These results suggest that epsilon-sarcoglycan serves a function similar to that of alpha-sarcoglycan and that residual beta-, gamma-, and delta-sarcoglycan seen in mutant mice and alpha-sarcoglycan-deficient patients is due to its association with epsilon-sarcoglycan.  相似文献   

15.
《The Journal of cell biology》1986,103(6):2173-2183
We have used a monoclonal antibody (CL2) directed against striated muscle isoforms of tropomyosin to selectively isolate a class of microfilaments (skeletal tropomyosin-enriched microfilaments) from differentiating muscle cells. This class of microfilaments differed from the one (tropomyosin-enriched microfilaments) isolated from the same cells by a monoclonal antibody (LCK16) recognizing all isoforms of muscle and nonmuscle tropomyosin. In myoblasts, the skeletal tropomyosin-enriched microfilaments had a higher content of alpha-actin and phosphorylated isoforms of tropomyosin as compared with the tropomyosin-enriched microfilaments. Moreover, besides muscle isoforms of actin and tropomyosin, significant amounts of nonmuscle isoforms of actin and tropomyosin were found in the skeletal tropomyosin-enriched microfilaments of myoblasts and myotubes. These results suggest that different isoforms of actin and tropomyosin can assemble into the same set of microfilaments, presumably pre-existing microfilaments, to form the skeletal tropomyosin-enriched microfilaments, which will eventually become the thin filaments of myofibrils. Therefore, the skeletal tropomyosin-enriched microfilaments detected here may represent an intermediate class of microfilaments formed during thin filament maturation. Electron microscopic studies of the isolated microfilaments from myoblasts and myotubes showed periodic localization of tropomyosin molecules along the microfilaments. The tropomyosin periodicity in the microfilaments of myoblasts and myotubes was 35 and 37 nm, respectively, whereas the nonmuscle tropomyosin along chicken embryo fibroblast microfilaments had a 34-nm repeat.  相似文献   

16.
We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two-dimensional gel analysis to have specificities to human EJ TM-3 and TM-5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity-purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel way for the nonmuscle cell to control the stability and organization of microfilaments, and to regulate the cell motility.  相似文献   

17.
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.  相似文献   

18.
19.
Myosin isoforms in mammalian skeletal muscle   总被引:9,自引:0,他引:9  
  相似文献   

20.
Summary The ultrastructural study of cross sections of normal skeletal muscle cells showed the existence of irregular patterns of actin filaments in connection with the hexagonal pattern of the myosin filaments. The actin filaments surrounding each myosin filament vary in number from 6 to 11. The most frequent relationship is 9 to 1, followed by 10 to 1 and 8 to 1. The hexagonal pattern of actin filaments was observed only in the 6 to 1 arrays; as the actin filaments increase in number, they tend to form different polygons or circles around the myosin filaments. All described patterns may occur in each sarcomere. The actin to myosin filament ratio varies from 3 to 4 within each individual myofibril. The described variability of the actin filaments arrays leads to several difficulties in an explanation of the mechanism of muscular contraction.Director, Chief of Section, Histology. Profesor Agregado de Embriología e HistologíaProfesor Adjunto de Embriología e HistologíaResidente de Anatomía Patol'ogica de la Ciudad Sanitaria La Paz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号