首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

2.
Abstract. The effect of SeO3 and SeO4 on NO3 assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol. m? in the uptake solutions severely inhibited the induction of NO3 uptake and active nitrate reductases. Selenate, at 1.0 mol m?3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m?3 SeO4 for 24 h, subsequent NO3 uptake from SeO4-free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3 when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3. By contrast, SO4 partially alleviated the inhibitory effect of SeO4 even in seedlings pretreated with SeO4. Since uptake of NO3 by intact seedlings was also inhibited by SeO3, the percentage of the absorbed NO3 that was reduced was not affected. By contrast, SeO4, which affected NO3 uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3 and SeO4 inhibited the in vivo reduction of NO3 as well as the induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4; approximately a five to 10 times higher concentration of SeO4 than SeO3 was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3 and SeO4 on in vivo NO3 reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4. The inhibitory effects of Se salts on the induction of nitrite reductase were, however, completely alleviated by SO4. The results show that in barley seedlings SeO3 is more toxic than SeO4. The reduction of SeO4 to SeO3 may be a rate limiting step in causing Se toxicity.  相似文献   

3.
The effects of ammonium (0–5 mol m?3) on root hair membrane potential and on the influx of nitrate and phosphate were investigated in roots of intact barley and tomato plants. In both species, addition of ammonium to the medium bathing the roots caused an almost immediate depolarization of the membrane potential; the depolarization was greater at higher concentrations of ammonium. Influx of 13NC3? and 32Pi was inhibited over the same time scale and concentration range. In tomato roots, there was little further depolarization of the membrane potential or inhibition of anion influx at ammonium concentrations above 0.4 mol m?3. In barley roots, the inhibition of nitrate influx and the depolarization of the membrane potential did not saturate below 5 mol m?3 ammonium.  相似文献   

4.
BassiriRad  Hormoz  Prior  Stephen A.  Norby  Rich J.  Rogers  Hugo H. 《Plant and Soil》1999,217(1-2):195-204
Models describing plant and ecosystem N cycles require an accurate assessment of root physiological uptake capacity for NH 4 + and NO 3 - under field conditions. Traditionally, rates of ion uptake in field-grown plants are determined by using excised root segments incubated for a short period in an assay solution containing N either as a radioactive or stable isotope tracer (e.g., 36ClO3 as a NH 4 + analogue, 14CH3NH3 as an NO 3 - analogue or 15NH 4 + and 15NO 3 - ). Although reliable, this method has several drawbacks. For example, in addition to radioactive safety issues, purchase and analysis of radioactive and stable isotopes is relatively expensive and can be a major limitation. More importantly, because excision effectively interrupts exchange of compounds between root and shoot (e.g., carbohydrate supply to root and N transport to shoot), the assay must be conducted quickly to avoid such complications. Here we present a novel field method for simultaneous measurements of NH 4 + and NO 3 - uptake kinetics in intact root systems. The application of this method is demonstrated using two tree species; red maple (Acer rubrum) and sugar maple (Acer saccharum) and two crop species soybean (Glycine max) and sorghum (Sorghum bicolor). Plants were grown in open-top chambers at either ambient or elevated levels of atmospheric CO2 at two separate US national sites involved in CO2 research. Absolute values of net uptake rates and the kinetic parameters determined by our method were found to be in agreement with the literature reports. Roots of the crop species exhibited a greater uptake capacity for both N forms relative to tree species. Elevated CO2 did not significantly affect kinetics of N uptake in species tested except in red maple where it increased root uptake capacity, V, for NH 4 + . The application, reliability, advantages and disadvantages of the method are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号