首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Metamorphosis in insects is regulated by juvenile hormone (JH) and ecdysteroids. The mechanism of 20-hydroxyecdysone (20E), but not of JH action, is well understood. A basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family member, methoprene tolerant (Met), plays an important role in JH action. Microarray analysis and RNA interference (RNAi) were used to identify 69 genes that require Met for their hydroprene-regulated expression in the red flour beetle, Tribolium castaneum. Quantitative real time PCR analysis confirmed microarray data for 13 of the 16 hydroprene-response genes tested. The members of the bHLH-PAS family often function as heterodimers to regulate gene expression and Met is a member of this family. To determine whether other members of the bHLH-PAS family are required for the expression of JH-response genes, we employed RNAi to knockdown the expression of all 11 members of the bHLH-PAS family and studied the expression of JH-response genes in RNAi insects. These studies showed that besides Met, another member of this family, steroid receptor co-activator (SRC) is required for the expression of 15 JH-response genes tested. Moreover, studies in JH responsive Aag-2 cells revealed that Aedes aegypti homologues of both Met and SRC are required for the expression of the JH-response gene, kr-h1, and SRC is required for expression of ecdysone-response genes. These data suggest the steroid receptor co-activator plays key roles in both JH and 20E action suggesting that this may be an important molecule that mediates cross-talk between JH and 20E to prevent metamorphosis.  相似文献   

9.
10.
11.
12.
The unliganded nuclear receptor (NR) generally recruits the NR corepressor (N-CoR) and the silencing mediator of retinoid and thyroid hormone receptor via its direct binding to the extended helical motif within dual NR-interaction domains (IDs) of corepressors. Interestingly, N-CoR has a third ID (ID3) upstream of two IDs (ID1 and ID2) and its core motif (IDVII), rather than an extended helical motif, is known to be involved directly in the exclusive interaction of ID3 with the thyroid hormone receptor (TR). Here, we investigated the molecular determinants of the TR interaction with ID3 to understand the molecular basis of the N-CoR preference shown by the TR homodimer. Using a one- plus two-hybrid system, we identified the specific residues of N-CoR-ID2 and N-CoR-ID3 that are required for stable association of N-CoR with the TR homodimer. By swapping experiments and mutagenesis studies, we found that the C-terminally flanked residues of the core motif of ID3 contribute to the TR preference for N-CoR-ID3, suggesting that an extended three-turn helix might form within the ID3 via a C-terminal extension (IDVIITRQI) and participate directly in the TR-specific interaction. Structural modeling of the ID3 motif on TR-LBD is consistent with this conclusion. Notably, we identified a novel interaction between N-CoR-ID3 and orphan NR RevErb that is mediated by the residues crucial also in TR binding. These observations raise the intriguing possibility that NR homodimers such as TR and RevErb display preferential binding to the N-CoR corepressor via their specific interactions with ID3, which is normally absent from the silencing mediator of retinoid and thyroid hormone receptor.  相似文献   

13.
The activation functions AF1 and AF2 of nuclear receptors mediate the recruitment of coregulators in gene regulation. AF1 is mapped to the highly variable and intrinsically unstructured N terminal domain and AF2 lies in the conserved ligand binding domain. The unstructured nature of AF1 offers structural plasticity and hence functional versatility in gene regulation. However, little is known about the key functional residues of AF1 that mediates its interaction with coregulators. This study focuses on the progesterone receptor (PR) and reports the identification of K464, K481 and R492 (KKR) as the key functional residues of PR AF1. The KKR are monomethylated and function cooperatively. The combined mutations of KKR to QQQ render PR isoform B (PRB) hyperactive, whereas KKR to FFF mutations abolishes as much as 80% of PR activity. Furthermore, the hyperactive QQQ mutation rescues the loss of PR activity due to E911A mutation in AF2. The study also finds that the magnitudes of the mutational effect differ in different cell types as a result of differential effects on the functional interaction with coregulators. Furthermore, KKR provides the interface for AF1 to physically interact with p300 and SRC-1, and with AF2 at E911. Intriguingly, the inactive FFF mutant interacts strikingly stronger with both SRC-1 and AF2 than wt PRB. We propose a tripartite model to describe the dynamic interactions between AF1, AF2 and SRC-1 with KKR of AF1 and E911 of AF2 as the interface. An overly stable interaction would hamper the dynamics of disassembly of the receptor complex.  相似文献   

14.
Obesity and its associated complications, which can lead to the development of metabolic syndrome, are a worldwide major public health concern especially in developed countries where they have a very high prevalence. RIP140 is a nuclear coregulator with a pivotal role in controlling lipid and glucose metabolism. Genetically manipulated mice devoid of RIP140 are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Moreover, white adipocytes with targeted disruption of RIP140 express genes characteristic of brown fat including CIDEA and UCP1 while skeletal muscles show a shift in fibre type composition enriched in more oxidative fibres. Thus, RIP140 is a potential therapeutic target in metabolic disorders. In this article we will review the role of RIP140 in tissues relevant to the appearance and progression of the metabolic syndrome and discuss how the manipulation of RIP140 levels or activity might represent a therapeutic approach to combat obesity and associated metabolic disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号