首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formate dehydrogenase (FDH, EC 1.2.1.2) was purified from Candida boidinii cells in a single step by biomimetic-dye affinity chromatography. For this purpose, seven' biomimetic analogues of the monochlorotriazine dye, Cibacron(R) Blue 3GA (CB3GA), and parent dichloro-triazine dye, Vilmafix((R)) Blue A-R (VBAR), bearing a car-boxylated structure as their terminal biomimetic moiety, were immobilized on crosslinked agarose gel, Ultrogel((R)) A6R. The corresponding new biomimetic-dye adsorbents, along with nonbiomimetic adsorbents bearing CB3GA and VBAR, were evaluated for their ability to purify FDH from extracts obtained after press-disintegration of C. boidinii cells. Optimal conditions for maximizing specific activity of FDH in starting extracts (1.8 U/mg) were realized when cell growth was performed on 4% methanol, and press disintegration proceeded in four consecutive passages before the homogenate was left to stand for 1 h (4 degrees C). When compared to nonbiomimetic adsorbents, biomimetic adsorbents exhibited higher purifying ability. Furthermore, one immobilized biomimetic dye, bearing as its terminal biomimetic moiety mercap-topyruvic acid linked on the chlorotriazine ring (BM6), displayed the highest purifying ability. Adsorption equilibrium data which were obtained for the BM6 adsorbent in a batch system corresponded well to the Langmuir isotherm and, in addition, breakthrough curves were taken for protein and FDH adsorption in a fixed bed of BM6 adsorbent. The dissociation constant ( K(D)) of the complex between immobilized BM6 and FDH was found to equal 0.05 muM. Adsorbent BM6 was employed in the purification of FDH from a 18-L culture of C. boidinii in a single step (60% overall yield of FDH). The purified FDH afforded a single-band on sodium dodecyl sulphate poly-acrylamide gel electrophoresis, and a specific activity of 7,0 U/mg (30 degrees C). (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
Molecular modeling was employed for the design of a biomimetic chimeric ligand for L-lactate dehydrogenase (LDH). This ligand is an anthraquinone monochlorotriazinyl dye comprising two moieties: (a) the ketocarboxyl biomimetic moiety, 2-(4-aminophenyl)-ethyloxamic acid, linked on the monochlorotriazine ring, mimicking the natural substrate of LDH, and (b) the anthraquinone chromophore moiety, linked also on the same monochlorotriazine ring via a diaminobenzenesulfonate group, acting as pseudomimetic of the cofactor NAD+. The positioning of the dye in the enzyme's binding site is primarily achieved by the recognition and positioning of the pseudomimetic anthraquinone moiety. The positioning of the biomimetic ketocarboxylic moiety is based on a match between the polar and hydrophobic regions of the enzyme's binding site with those of the biomimetic moiety of the ligand. The length of the biomimetic moiety is predetermined for the ketoacid to approach the enzyme catalytic site and form charge-charge interactions. The biomimetic chimeric ligand and the commercial nonbiomimetic ligand Cibacron(R) blue 3GA (CB3GA), were immobilized on crosslinked beaded agarose gel via their chlorotriazine ring. The two affinity adsorbents were evaluated for their purifying ability for LDH from six sources (bovine heart and pancreas, porcine muscle, chicken liver and muscle, and pea seeds). The biomimetic adsorbent exhibited approximately twofold higher purifying ability for LDH compared to the CB3GA adsorbent; therefore, the former was integrated in the purification procedure of LDH from bovine heart extract. The LDH afforded by this two-step purification procedure shows specific activity equal to 600 U/mg (25 degrees C) and a single band after SDS-PAGE analysis.  相似文献   

3.
Protein molecular modelling and ligand docking were employed for the design of anthraquinone galactosyl-biomimetic dye ligands (galactosyl-mimodyes) for the target enzyme galactose dehydrogenase (GaDH). Using appropriate modelling methodology, a GaDH model was build based on a glucose-fructose oxidoreductase (GFO) protein template. Subsequent computational analysis predicted chimaeric mimodye-ligands comprising a NAD-pseudomimetic moiety (anthraquinone diaminobenzosulfonic acid) and a galactosyl-mimetic moiety (2-amino-2-deoxygalactose or shikimic acid) bearing an aliphatic 'linker' molecule. In addition, the designed mimodye ligands had an appropriate in length and chemical nature 'spacer' molecule via which they can be attached onto a chromatographic support without steric clashes upon interaction with GaDH. Following their synthesis, purification and analysis, the ligands were immobilized to agarose. The respective affinity adsorbents, compared to other conventional adsorbents, were shown to be superior affinity chromatography materials for the target enzyme, Pseudomonas fluorescensbeta-galactose dehydrogenase. In addition, these mimodye affinity adsorbents displayed good selectivity, binding low amounts of enzymes other than GaDH. Further immobilized dye-ligands, comprising different linker and/or spacer molecules, or not having a biomimetic moiety, had inferior chromatographic behavior. Therefore, these new mimodyes suggested by computational analysis, are candidates for application in affinity labeling and structural studies as well as for purification of galactose dehydrogenase.  相似文献   

4.
The purification of trypsin from bovine pancreas was employed in a case study concerning the design and optimization of peptide-ligand adsorbents for affinity chromatography. Four purpose-designed tripeptide-ligands were chemically synthesized (>95% pure), exhibiting an Arg residue as their C-terminal (site P(1)) for trypsin bio-recognition, a Pro or Ala in site P(2), and a Thr or Val in site P(3). Each tripeptide-ligand was immobilized via its N-terminal amino group on Ultrogel A6R agarose gel, which was previously activated with low concentrations of cyanuric chloride (10.5 to 42.5 mumol/g gel). Well over 90% of the peptide used was immobilized. Three different concentrations were investigated for every immobilized tripeptide-ligand, 3.5, 7.0, and 14 mumol/g gel. The K(D) values of immobilized tripeptide-trypsin complexes were determined as well as the purifying performance and the trypsin-binding capacity of the affinity adsorbents. The K(D) values determined were in good agreement with the trypsin purification performance of the respective affinity adsorbents. The tripeptide sequence H-TPR-OH displayed the highest affinity for trypsin (K(D) 8.7 muM), whereas the sequence H-TAR-OH displayed the lowest (K(D) 38 muM). Dipeptide-ligands have failed to bind trypsin. When the ligand H-TPR-OH was immobilized via its N-terminal on agarose, at a concentration of 14 mumol/g gel, it produced the most effective affinity chromatography adsorbent. This adsorbent exhibited high trypsin-binding capacity (approximately 310,000 BAEE units/mL of adsorbent); furthermore, it purified trypsin from pancreatic crude extract to a specific activity of 15,200 BAEE units/mg (tenfold purification), and 82% yield. (c) 1997 John Wiley & Sons, Inc.  相似文献   

5.
Optimized procedures for the affinity purification of soybean agglutinin (SBA) from soybean flour, and its further immobilization, were developed. Lectin purification on galactosyl-Sepharose yielded 44.5+/-3.5 mg of pure SBA/50 g of flour. To prepare SBA adsorbents, the lectin was immobilized onto 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP) activated Sepharose with high yields (77%). Feasibility of the use of this improved SBA adsorbent for affinity purification of Streptococcus pneumoniae capsular polysaccharides from strain 14 (CPS-14) at laboratory scale was demonstrated. Using SBA-Sepharose adsorbent (7.0 mg lectin per ml), amounts of 6.3 mg of pure CPS-14 per cycle were produced, the adsorbent being reused up to four times without loss of capacity.  相似文献   

6.
In this study, recombinant Staphylococcus Protein A (rSPA) was immobilized on three different amino-epoxy agaroses: traditional amino-epoxy, butanediol diglycidyl-amino and glycidyl-amino agarose (coded as AE, BDA and GA agarose, respectively), for obtaining affinity adsorbents to bind human immunoglobulin G (hIgG). The effects of the spacer arm microenvironment of the support on the rSPA immobilization were investigated. Compared with the AE agarose, the GA agarose presents ionized amino groups far from the support. Therefore, the rSPA immobilization efficiency of 92 % is slightly higher than that of 88 % on AE agarose due to the weak steric hindrance. Moreover, the BDA agarose exhibited the lowest immobilization efficiency of 58 %, attributing to the existence of hydrophobic butylidene groups on the BDA agarose. Ethanolamine was used as the blocking agent to obtain three affinity adsorbents. The hIgG-binding capacity from the human plasma was determined to be 18.7, 34.7 and 38.7 mg/mL for rSPA-BDA, rSPA-AE and rSPA-GA, respectively. Furthermore, the maximum hIgG-binding capacity was calculated by the Langmuir model of adsorption isotherm to be 25.1, 44.8 and 52.2 mg/mL for rSPA-BDA, rSPA-AE and rSPA-GA, respectively. Therefore, the GA agarose bears the optimal spacer arm microenvironment for preparing the rSPA adsorbent with high hIgG-binding capacity.  相似文献   

7.
The objective of this study was the development of affinity adsorbent particles with the appropriate characteristics to be applied in protein purification using the affinity ultrafiltration method. To prepare affinity macroligands Cibacron Blue 3GA, as a ligand molecule, was immobilized by covalent bonding onto yeast cell walls, the support material or matrix. The maximum attachment of the ligand to the matrix was 212 μmol/g (ligand dry weight/yeast dry weight). Lysozyme was selected as the protein model for the adsorption studies. Its adsorption onto the matrix without ligand and matrix with attached ligand were investigated batch-wise. The adsorption equilibrium isotherms appeared to follow a typical Langmuir isotherm. The maximum adsorption capacity (q(m)) of the Cell-Cibacron macroligand for lysozyme was 110 mg/ml of wet macroligand. The adsorbent was also employed for the separation of lysozyme from hen egg white. High purity lysozyme was obtained.  相似文献   

8.
We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.  相似文献   

9.
Lactate dehydrogenase (LDH) [EC 1.1.1.27] in a crude extract (40-80% ammonium sulfate fraction) of bovine brain was adsorbed on an immobilized colchicine column and specifically eluted by addition of 1 mM NADH. The purity and subunit composition of the pooled LDH were estimated by two-dimensional gel electrophoresis. With an increase of NaCl concentration from 0 to 2.0 M, ligand saturation of LDH on immobilized colchicine increased from 6.8 to 14%, whereas that on immobilized Cibacron blue F3GA decreased from 2.1 to 0%. In the presence of high NaCl concentration, immobilized colchicine enabled both large- and small-scale purification of LDH by affinity chromatography and resulted in a yield of 117 mg from 1 kg of bovine brain in the presence of 2.5 M NaCl or higher recoveries of 54-96% from various tissues of one rat in the presence of 1.0 M NaCl. These results indicate that immobilized colchicine is an excellent adsorbent for the isolation and purification of LDH by affinity chromatography and has a high LDH-adsorbing capacity dependent upon a high NaCl concentration. Kinetic studies revealed that colchicine apparently competed with cofactor NAD for the active site of LDH and the Ki values of colchicine decreased with an increase of NaCl concentration. The chemical specificity of the colchicine-binding site of LDH was studied by the use of colchicine analogues and it is concluded that both the tropolone moiety (C-ring) and the amido bond in a side chain of colchicine structure are essential to the colchicine-LDH interaction.  相似文献   

10.
We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.  相似文献   

11.
Affinity chromatography is widely employed in laboratory and large-scale for the purification of biotherapeutics and diagnostics. Some of the most widely used ligands in affinity chromatography have been several reactive chlorotriazine dyes. In particular, immobilized anthraquinone dyes have found a plethora of applications in affinity chromatography because they are inexpensive, are resistant to chemical and biological degradation, are sterilizable and cleanable in situ, and are readily immobilized to generate affinity absorbents which display high binding capacity for a broad spectrum of proteins. This article provides detailed protocols on the preparation of a dye-ligand affinity adsorbent. Also, detailed protocols for effective application of these media, emphasizing binding and elution conditions are presented.  相似文献   

12.
Two commercially important enzymes, L-lactate dehydrogenase (LDH) and L-malate dehydrogenase (MDH) were purified simultaneously from bovine heart, on an agarose affinity adsorbent. This adsorbent bears a dye-ligand composed of an anthraquinone chlorotriazine chromophore linked to a biomimetic terminal 4-aminophenyloxanylic acid moiety. The purification protocol exploited the biomimetic affinity adsorbent, in combination with a cross-linked agarose DEAE anion-exchanger. The procedure comprised a preliminary anion-exchange first step, for the separation of the three enzyme activities, mMDH, cMDH and LDH. In the second step, that of affinity chromatography, the unbound mMDH obtained from the first step, was purified by specific elution with NAD+/sulphite (22.5-fold purification, 55% step-yield). The procedure afforded mMDH preparation of specific activity approx. 1,300?u/mg (25?°C) at 45% overall yield, free of cytoplasmic MDH, glutamic-oxaloacetic transaminase (GOT) and fumarase. The LDH activity, which, bound to the anion-exchanger during the first step, was recovered from the adsorbent in 200?mM KCl, and finally purified by biomimetic-dye affinity chromatography (NAD+/sulphite elution) and a second ion-exchange chromatography step (elution with 200?mM KCl). The LDH preparation exhibited specific activity approx. 500?u/mg at 25?°C (content of impurities: pyruvate kinase and GOT were not detected; MDH, 0.01%).  相似文献   

13.
Cyclic 1-O-acyl-2-O-alkyl-glycero-3-phosphotriesters and 1-O-acyl-2-O-alkyl-glycero-3-bromoethylphosphate with a free acyl moiety in position 1 of the glycerol backbone were synthesized. These phospholipid intermediates were covalently bound to AH-Sepharose via the carbodiimide method. After immobilization the corresponding phosphatidylethanolamine analogues were obtained by acid hydrolysis of the cyclic phosphotriesters and by direct amination of the bromoethylphosphate. Thus, in a short, stepwise synthesis including minimum use of protecting groups, a variety of immobilized phospholipid analogues are available as affinity adsorbents for the purification of enzymes related to phospholipid metabolism.  相似文献   

14.
《Process Biochemistry》2004,39(11):1573-1581
Silica-based immobilized metal affinity chromatography adsorbents with various ligand densities were prepared for the purification and immobilization of poly(His)-tagged d-hydantoinase (DHTase). An adsorbent with a ligand density of 13.0 μmol Cu2+/g gel exhibiting the optimal selectivity and a capacity of 1.4 mg/g gel toward the poly(His)-tagged enzyme was identified. The adsorbent was used for the one-step purification of His-tagged enzymes from crude cell lysate with a purity above 90%. The silica-based affinity adsorbents are particularly well suited for industrial scale operations due to their robustness. A packed-bed bioreactor with the DHTase-loaded adsorbents was used for the continuous conversion of d,l-p-hydroxyphenylhydantoin (d,l-HPH) to N-carbamoyl-d-hydroxyphenylglycine, an intermediate for the production of d-hydroxylphenylglycine. Under optimal conditions, 60 °C and pH 8.0, a conversion of 60% was obtained at a residence time of 30 min. Upon extended operation, the catalytic activity of the biocatalysts declined significantly due to enzyme leakage and enzyme denaturation. The extent of enzyme leakage can be attenuated by crosslinking with glutaraldehyde. In this study, we successfully demonstrate that a packed-bed bioreactor containing silica-based IMAC adsorbents can be used for the direct purification and immobilization of poly(His)-tagged enzymes for biotransformation.  相似文献   

15.
Adsorption of metal complex dyes from aqueous solutions by pine sawdust   总被引:2,自引:0,他引:2  
An attempt to alleviate the problem caused by the presence of metal complex dyes, mostly used in textile industries, in the textile effluents was undertaken. The effects of adsorbent particle size, pH, adsorbent dose, contact time and initial dye concentrations on the adsorption of metal complex dyes by pine sawdust was investigated. Acidic pH was favorable for the adsorption of metal complex dyes. A contact time of 120 min was required to reach the equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well the Langmuir isotherm. The monolayer adsorption capacities are 280.3 and 398.8 mg dye per g of pine sawdust for Metal Complex Blue and Metal Complex Yellow, respectively. The results indicate that pine sawdust could be employed as low-cost alternative to commercial activated carbon in aqueous solution for the removal of metal complex dyes.  相似文献   

16.
Liu JJ  Wang XC  Fan B 《Bioresource technology》2011,102(9):5305-5311
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP.  相似文献   

17.
The thermostable Thermus aquaticus DNA polymerase (Taq Pol) has been the key factor in transforming the initial PCR method into one with huge impact in molecular biology and biotechnology. Therefore, the development of effective affinity adsorbents for the purification of Taq Pol, as well as other DNA polymerases, attracts the attention of the enzyme manufacturers and the research laboratories. In this report we describe a simple protocol for the purification of Taq Pol from E. coli lysates, leading to enzymes of high specific activity and purity. The protocol is based on a single affinity chromatography step, featuring an immobilized ligand selected from a structure-biased combinatorial library of dNTP-mimetic synthetic ligands. The ligand library was screened for its ability to bind and purify Taq Pol from E. coli lysates. One immobilized ligand (mABSGu) of the general formula X-Trz-Y, bearing 9-aminoethylguanine (AEGu) and aniline-2-sulfonic acid (mABS) linked on the triazine scaffold (Trz), displayed the highest purifying ability. Adsorption equilibrium studies with this affinity ligand and Taq Pol determined a dissociation constant (KD) of 0.12 mM for the respective complex, whereas ATP prevented the formation of the mABSGu-Taq Pol complex. The mABSGu affinity adsorbent was exploited in the development of a facile Taq Pol purification protocol, affording homogeneous enzyme (>99% purity, approximately 61 500 U/mg) in a single chromatography step. Quality control tests showed that Taq Pol purified on the mABSGu affinity adsorbent is free of nucleic acids and contaminating nuclease activities.  相似文献   

18.
The human anti‐human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity‐ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4‐aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS‐Trz‐4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS‐Trz‐4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two‐step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S‐Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS‐Trz‐4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and enzyme‐linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
用活化的壳聚糖为载体,鸡卵粘蛋白(CHOM)为配基,制备了胰蛋白酶的亲和吸附剂。采用该吸附剂亲和层析胰酶,所得产物经SDS-PAGE电泳检测,带中只有一条带颜色较深,且与标准胰蛋白酶带位置几乎相同。实验结果表明1 g壳聚糖可以固定60 mg鸡卵粘蛋白,制成的亲和吸附剂可吸附胰蛋白酶的最大量为118 U/g。以壳聚糖为载体的亲和吸附剂制备过程简单、安全。  相似文献   

20.
The kinetic locking-on strategy improves the selectivity of protein purification procedures based on immobilized cofactor derivatives through use of enzyme-specific substrate analogues in irrigants to promote biospecific adsorption. This paper describes the development and application of this strategy to the one-chromatographic step affinity purification of NAD(P)+-dependent alcohol dehydrogenases using 8'-azo-linked immobilized NAD(P)+, S6-linked and N6-linked immobilized NAD+, and N6-linked immobilized NADP+ derivatives. These studies were carried out using alcohol dehydrogenases from Saccharomyces cerevisiae (YADH, EC 1.1.1.1), equine liver (HLADH, EC 1.1.1.1), and Thermoanaerobium brockii (TBADH, EC 1.1.1.2). The results reveal that the factors which require careful consideration before development of a truly biospecific system based on the locking-on strategy include: (i) the stability of the immobilized cofactor derivative; (ii) the spacer-arm composition of the affinity derivative; (iii) the accessible immobilized cofactor concentration; (iv) the soluble locking-on ligand concentration; (v) the dissociation constant of locking-on ligand, and (vi) the identification and elimination of nonbiospecific interference. The S6-linked immobilized NAD+ derivative (synthesized with a hydrophilic spacer arm) proved to be the most suitable of the affinity adsorbents investigated in the present study for use with the locking-on strategy. This conclusion was based primarily on the observations that this affinity adsorbent was stable, retained cofactor activity with the "test" enzymes under study, and was not prone to nonbiospecific interactions. Using this immobilized derivative in conjunction with the locking-on strategy, alcohol dehydrogenase from Saccharomyces cerevisiae was purified to electrophoretic homogeneity in a single affinity chromatographic step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号