首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, rDNA-ITS sequence analysis seems to be the most appropriate method for comprehensive classification of Rhizoctonia spp. Our previous review article was concerned with detailed analysis of multinucleate Rhizoctonia (MNR), and the current review complements the previous one with detailed analysis of binucleate Rhizoctonia (BNR) (teleomorphs: Ceratobasidium spp. and Tulasnella spp.) and uninucleate Rhizoctonia (UNR) (teleomorph: C. bicorne). Data of all the appropriate BNR and UNR accumulated in GenBank were analyzed together in neighbor-joining (NJ) trees supplemented with percent sequence similarity within and among the anastomosis groups (AGs) and subgroups. Generally, the clusters of the isolate sequences supported the genetic basis for the AG based on hyphal fusion anastomosis. Comprehensive interrelationships among all the currently available MNR, BNR, and UNR groups and subgroups in GenBank were subsequently analyzed in NJ and maximum-parsimony (MP) trees, showing the genetic relatedness among the different groups and indicating possible bridging groups between MNR, BNR, and UNR. The review also indicates serious inaccuracies in designation of sequences of some isolates deposited in GenBank. Several additional teleomorph genera with Rhizoctonia spp. anamorphs have also been reported in the literature. However, as they have not been intensively studied, there were no available data on their rDNA-ITS sequences that could be included in this review.  相似文献   

2.
以重要植物病原菌为特征的丝核菌是一类在土壤中广泛分布的丝状真菌,通常不产孢,以菌丝或菌核的形式存在,多样性非常丰富。本文基于国内外最新研究进展,对依据菌丝体的细胞核数目、菌丝融合、有性生殖和系统进化等方面的基本特征展开的丝核菌分类体系及分类现状进行了综述。基于菌丝的细胞核数目,丝核菌被分为单核、双核和多核丝核菌三大类群。自然界中单核丝核菌数量极少,多核和双核丝核菌在全球分布广泛,占丝核菌的绝大多数。基于菌丝融合试验的结果,目前多核丝核菌被分为13个菌丝融合群,双核丝核菌被分为18个菌丝融合群。部分融合群内又根据一些稳定的特征分了亚群,但亚群的建立标准并不统一。目前的分子系统学研究结果基本支持丝核菌的菌丝融合群及亚群的分类。基于部分有性世代被发现的菌株的形态特征,多核和双核丝核菌分别被鉴定为亡革菌属和角担菌属。此外,目前已有分属重要植物病原菌和兰科菌根菌类群的至少9个融合群或亚群的17个菌株完成了基因组测序,比较基因组学和线粒体组学开始在丝核菌分类和进化研究中发挥作用。丝核菌分类系统特殊且复杂,作者在文末提出了目前丝核菌分类学研究面临的问题和今后研究的趋势,期待更多的学者参与到这个重要菌...  相似文献   

3.
Isolates of Rhizoctonia spp. associated with stem canker and black scurf disease of potato were examined for their anastomosis group, sequence variations in the ITS‐5.8S rDNA region, pathogenicity and sensitivity to fungicides. A total of 92 isolates were obtained from diseased tuber, stolon and sprouts of the potato plants, collected from five districts of Bolu province, Turkey. Based on the anastomosis group and the similarity of the nucleotide sequence of the ITS‐5.8S rDNA, most of the isolates (81.5%) were identified as AG 3 PT. Other isolates belonged to AG 2‐1 (1.08%), AG 2‐2 IV (1.08%), AG 4 HG II (8.07%), AG 5 (2.17%), binucleate Rhizoctonia AG A (1.08%) and AG K (4.35%). Pathogenicity tests showed that isolates of AG 3 PT, AG 4 HG II and AG 5 caused similar degrees of disease severity on 45‐day‐old potato seedlings, whereas AG 2‐1 was moderately virulent. AG 2‐2 IV and binucleate Rhizoctonia spp. were weakly pathogenic or non‐pathogenic on potato seedlings. In this study, anastomosis groups of Rhizoctonia spp. isolates associated with potato in Turkey were characterized for the first time using molecular techniques and classified at the level of subgroups. Furthermore, the effect of selected fungicides was evaluated on disease development caused by soil‐borne inoculums of different anastomosis groups (AGs). Flutolanil and Bacillus subtilis QST 713 were found to be most effective against the Rhizoctonia isolates tested. These results revealed significant differences among the fungicides on disease development resulted from the different AGs.  相似文献   

4.
Abstract

Root rot disease is very common in the bean, soybean, faba bean and pea plants growing areas in Samsun province. Disease incidence and severity were detected the highest at 93.8% and 55.4% in the bean growing area, and the lowest at 64.0% and 24.3% in the faba bean growing area respectively. In this study, a total of 2714 fungal isolates were obtained from some legume plants and soil samples. The most common fungi isolated from root and soil samples were Fusarium spp., multinucleate Rhizoctonia (MNR), binucleate Rhizoctonia (BNR) and Pythium spp. respectively. Fusarium spp. were isolated at high rates from all the examined areas. MN Rhizoctonia and BN Rhizoctonia were isolated both from inner and coastal areas of the province, whereas Pythium spp. were isolated in costal areas, except for the Vezirköprü district which is situated in the inner area. When looking at the interactions among pathogens causing root rot, it was found the great majority of the samples (30.4%) isolated both Fusarium spp. and MNR-BNR group fungi, whereas Fusarium spp. and Pythium spp. were isolated together from 10.9% of the samples and MNR-BNR and Pythium spp. from only 1.5% of the samples.  相似文献   

5.
Two isolates of Laetisaria arvalis and 10 of binucleate Rhizoctonia spp. (BNR) from the Ohio sugar beet production area, were tested in the greenhouse and field for biocontrol of Rhizoctonia crown and root rot of sugar beet, caused by Rhizoctonia solani anastomosis group 2, type 2. L. arvalis was ineffective in standard greenhouse tests, and the single isolate used in the field was generally ineffective. Seven of 10 BNR isolates effectively controlled crown and root rot in greenhouse tests. Delayed application of biocontrol agents to plants 5 – 10 wk old was generally more effective than applications made at planting. A BNR isolate significantly reduced % plant loss and disease ratings and increased yield in a 1985 field test as compared with the control infested with R. solani alone. Two BNR isolates were effective in a 1986 field test and increased yields c. 22% in comparison to a L. arvalis treatment, which did not differ from the R. solani-infested control. The Ohio binucleate Rhizoctonia isolates appear to have considerable potential as applied biocontrol agents and may play a role in the natural ecology of R. solani in the sugar beet production area of Ohio.  相似文献   

6.

Background  

The soil borne fungus Rhizoctonia is one of the most important plant pathogenic fungi, with a wide host range and worldwide distribution. In cauliflower (Brassica oleracea var. botrytis), several anastomosis groups (AGs) including both multinucleate R. solani and binucleate Rhizoctonia species have been identified showing different levels of aggressiveness. The infection and colonization process of Rhizoctonia during pathogenic interactions is well described. In contrast, insights into processes during interactions with weak aggressive or non-pathogenic isolates are limited. In this study the interaction of cauliflower with seven R. solani AGs and one binucleate Rhizoctonia AG differing in aggressiveness, was compared. Using microscopic and histopathological techniques, the early steps of the infection process, the colonization process and several host responses were studied.  相似文献   

7.
Previous research has demonstrated that whole cellular fatty acids analysis is a useful tool for identifying and establishing taxonomic relationships between anastomosis groups (AGs) and related Rhizoctonia isolates. In this experiment, the composition of fatty acid of 28 isolates of teleomorph genus Ceratobasidium cornigerum, consisting of binucleate Rhizoctonia, AG-A, AG-B(o), AG-C, AG-P, and AG-Q, was evaluated using gas chromatography. Eleven fatty acids identified, i.e., myristic, pentadecanoic, palmitic, 2-hydroxypalmitic, palmitoleic, heptadecanoic, 9-heptadecenoic, stearic, oleic, linoleic, and linolenic acids, were present in isolates of AG-A, AG-B(o), AG-C, AG-P, and AG-Q. The major fatty acids, palmitic, oleic, and linoleic acids, were common in all isolates, constituting 87.1% to 94.7% of the whole cellular fatty acids identified. Isolates within the same AG were closely clustered, whereas isolates from different AGs were clearly and distinctly clustered based on average linkage cluster analysis of whole cellular fatty acids. Principal-component analysis generated from all fatty acids also confirmed the divergent separation of the 5 AGs of binucleate Rhizoctonia.  相似文献   

8.
G. H. Yang    H. R. Chen    S. Naito    A. Ogoshi    Y. L. Deng 《Journal of Phytopathology》2005,153(6):333-336
Twenty binucleate Rhizoctonia (BNR) isolates were collected from roots of soya bean, pea, snap bean and pak choy with root rot symptoms in Yunnan Province, China. Chinese isolates anastomosed with the tester isolate of anastomosis group‐A (AG‐A; C‐517) with a high C2 fusion rate (>70%). Chinese isolates were pathogenic to soya bean, pea, snap bean and pak choy and had 97% similarity sequence of 5.8S rDNA‐internal transcribed spacer with AG‐A tester isolates SN‐2 and C‐662. When compared with other groups, AG‐Ba and AG‐Bb, Chinese isolates showed 77% sequence similarity. These results show that Chinese isolates belong to AG‐A of BNR. Growth rate, hyphal diameter, cultural characteristics and pathogenicity of the Chinese isolates differed significantly from the tester isolate of AG‐A. This is the first report on AG‐A in China.  相似文献   

9.
Fungi with Rhizoctonia-like mycelia were isolated from the foliage, stem-base and roots of ericaceous plants collected from nurseries in Scotland. Isolated fungi were identified as either binucleate Rhizoctonia spp. or Rhizoctonia solani on the basis of hyphal characteristics and nuclear number. The optimum temperature range for growth of binucleate Rhizoctonia spp. and R. solani was 20 and 25 C, resepctively. All isolates tested for pathogenicity caused foliar browning, and webs of mycelial growth were observed on dead and dying foliage. Binucleate Rhizoctonia spp. and R. solani are recorded for the first time on container-grown ericaceous plants in Scotland.  相似文献   

10.
Sixty isolates of Rhizoctonia spp. were obtained from Cuban bean fields during the period 2004–2007. Isolates were characterized with different techniques, including nuclei staining, pectic zymogram, PCR–RFLP analysis of the rDNA–ITS region and sequencing of the rDNA–ITS region. The majority of the isolates were identified as multinucleate Rhizoctonia solani isolates, representing two different anastomosis groups (AGs), AG 2‐2 WB and AG 4 HGI; the remaining isolates were binucleate Rhizoctonia isolates and belonged to AG F and AG A. AG 4 HGI isolates were equally distributed in all soil types; AG 2‐2 isolates were more frequently isolated from cambisols, whereas AG F isolates were related to calcisols. Pathogenicity experiments in vitro and in the greenhouse, revealed that binucleate isolates only caused root rot, whereas R. solani isolates were able to cause root rot and hypocotyl rot. Furthermore, differences in virulence level were observed between R. solani and binucleate isolates and among different AGs. Isolates of R. solani AG 4 HGI and R. solani AG 2‐2 WB were the most aggressive, binucleate isolates of AG F were intermediate aggressive, whereas a binucleate isolate of AG A was weakly aggressive. In contrast with other reports about R. solani in bean, web blight symptoms were never observed during this study.  相似文献   

11.
Ninety seven Rhizoctonia isolates were collected from different Brassica species with typical Rhizoctonia symptoms in different provinces of Vietnam. The isolates were identified using staining of nuclei and sequencing of the rDNA-ITS barcoding gene. The majority of the isolates were multinucleate R. solani and four isolates were binucleate Rhizoctonia belonging to anastomosis groups (AGs) AG-A and a new subgroup of A-F that we introduce here as AG-Fc on the basis of differences in rDNA-ITS sequence. The most prevalent multinucleate AG was AG 1-IA (45.4% of isolates), followed by AG 1-ID (17.5%), AG 1-IB (13.4%), AG 4-HGI (12.4%), AG 2-2 (5.2%), AG 7 (1.0%) and an unknown AG related to AG 1-IA and AG 1-IE that we introduce here as AG 1-IG (1.0%) on the basis of differences in rDNA-ITS sequence. AG 1-IA and AG 1-ID have not been reported before on Brassica spp. Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on detached leaves of several cabbage species. In in vitro tests on white cabbage and Chinese cabbage, both hosts were severely infected by AG 1-IB, AG 2-2, AG 4-HGI, AG 1-IG and AG-Fc isolates, while under greenhouse conditions, only AG 4-HGI, AG 2-2 and AG-Fc isolates could cause severe disease symptoms. The occurrence of the different AGs seems to be correlated with the cropping systems and cultural practices in different sampling areas suggesting that agricultural practices determine the AGs associated with Brassica plants in Vietnam.  相似文献   

12.
Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus more costly and time‐consuming, or using only one fluorescent dye, thus less accurate. Methods and Results: A red primary fluorescence (autofluorescence) of the hyphal cell walls and septa of Rhizoctonia spp. with green excitation is evidenced in Rhizoctonia spp. This property is exploited and combined for the first time with a conventional DAPI fluorescence to accurately determine the nuclear condition of Rhizoctonia. This bi‐fluorescence imaging strategy depicted the nuclear condition in Rhizoctonia spp. more accurately than the conventional DAPI fluorescence used alone and was validated against isolates previously genotyped by DNA sequencing. Conclusions: We demonstrated that the bi‐fluorescence imaging strategy was safe, accurate and simple to perform and interpret. Significance and Impact of the Study: The developed bi‐fluorescence imaging strategy provides a sensitive tool for determining the nuclear condition of Rhizoctonia strains. Its simplicity is a key advantage when there are numerous cultures to be examined.  相似文献   

13.
The rRNA cistron (18S–ITS1–5.8S–ITS2–28S) is used widely for phylogenetic analyses. Recent studies show that compensatory base changes (CBC) in the secondary structure of ITS2 correlate with genetic incompatibility between organisms. Rhizoctonia solani consists of genetically incompatible strain groups (anastomosis groups, AG) distinguished by lack of anastomosis between hyphae of strains. Phylogenetic analysis of internal transcribed spacer (ITS) sequences shows a strong correlation with AG determination. In this study, ITS sequences were reannotated according to the flanking 5.8S and 28S regions which interact during ribogenesis. One or two CBCs were detected between the ITS2 secondary structure of AG-3 potato strains as compared to AG-3 tobacco strains, and between these two strains and all other AGs. When a binucleate Rhizoctonia species related to Ceratobasidiaceae was compared to the AGs of R. solani, which were multinucleate (3–21 nuclei per cell), 1–3 CBCs were detected. The CBCs in potato strains of AG-3 distinguish them from AG-3 tobacco strains and other AGs yielding further evidence that the potato strains of AG-3 originally described as R. solani are a species distinct from other AGs. The ITS1–5.8S–ITS2 sequences were analyzed by direct sequencing of PCR products from 497 strains of AG-3 isolated from potato. The same 10 and 4 positions in ITS1 and ITS2, respectively, contained variability in 425 strains (86%). Nine different unambiguous ITS sequences (haplotypes) could be detected in a single strain by sequencing cloned PCR products indicating that concerted evolution had not homogenized the rRNA cistrons in many AG-3 strains. Importantly, the sequence variability did not affect the secondary structure of ITS2 and CBCs in AG-3. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Rhizoctonia solani is a destructive fungal pathogen with a wide host range. The R. solani complex species includes several divergent groups delimited by affinities for hyphal anastomosis. In this study, genetic variation among 20 isolates of R. solani anastomosis group 1 (AG1) subgroups (AG1‐IA and AG1‐IB) collected from Mâzandaran province, Iran, and standard isolates of these subgroups, was determined by isozyme analysis and total soluble protein profile. Mycelial protein pattern and isozyme analysis were studied using denaturing and non‐denaturing polyacrylamide gel electrophoresis, respectively. A total of 15 enzyme systems were tested, among which six enzymes including esterase, alkaline phosphatase, superoxide dismutase, octanol dehydrogenase, lactate dehydrogenase and mannitol dehydrogenase generated distinct and reproducible results. The soluble protein patterns were similar among the R. solani isolates examined; however, minor differences in banding pattern were observed between the two subgroups. In isozyme analysis, a total of 64 electrophoretic phenotypes were detected for all six enzymes used. Based on cluster analysis and similarity matrix, the fungal isolates were divided into two genetically distinct groups of I and II consistent with the previously reported AG1‐IA and AG1‐IB subgroups in AG1. Group I represented all isolates belonging to AG1‐IA subgroup, whereas group II represented all isolates belonging to AG1‐IB subgroup. Results from isozyme analysis suggest that the subgrouping concept within AGs is genetically based.  相似文献   

15.

Hyphal anastomosis testing and molecular methods have been the primary criteria employed to understand the evolutionary and taxonomic relationships of the soil-borne fungal plant pathogen Rhizoctonia solani species complex. In this study, a metabolomics-based approach for characterizing and identifying isolates of R. solani using gas chromatography/mass spectrometry (GC/MS) metabolite profiling and footprinting was developed. Multivariate and hierarchical cluster analyses of GC/MS data provided resolution of isolates belonging to anastomosis groups (AGs) 1–6, 9, and 10 of R. solani. Clustering of R. solani AG-3 isolates, based on host origin, was also observed and attributed to metabolite-biomarkers belonging to amino, carboxylic and fatty acids. The chemotaxonomic approach using metabolomics is a high-throughput methodology that complements existing molecular approaches for the taxonomic investigation of Rhizoctonia isolates and monitoring of fungal metabolism.

  相似文献   

16.
17.
Biology,Epidemiology and Management of Rhizoctonia solani on Potato   总被引:1,自引:0,他引:1  
Black scurf and stem canker on potato is an economically important disease complex, causing both quantitative and qualitative damage to potato crops which occurs in potato production areas throughout the world. The ribosomal DNA internal transcribed spacer sequence analysis is currently accepted and a commonly used method for classifying Rhizoctonia species and anastomosis groups (AGs). To date, 13 AGs have been recognized. The updated AG distribution in potato worldwide production areas confirm the status of AG‐3 as the most prevalent AG in potato and reflects the population dynamics of the pathogen probably due to global trading of tubers. As R. solani is a tuber‐ and soilborne pathogen, the ability to detect its levels in the seed tubers and in the soil and predict the potential damage is an important factor in controlling the disease. Effective disease management of Rhizoctonia disease requires implementation of an integrated disease management approach and knowledge of each of its stages. Although the most important control measures are cultural, chemical control (either by seed tuber‐ or in‐furrow treatments) is still an important tool in reducing the damages caused by R. solani.  相似文献   

18.
Rhizoctonia solani is a soilborne pathogen with a broad host range. An anastomosis group (AG) system based on hyphal fusions has been established to distinguish between different R. solani subgroups in this species complex. Members of the AG2-2IIIB subgroup can cause serious problems in sugar beet production, resulting in Rhizoctonia root and crown rot. In this review, we summarize the current molecular advances in the R. solani sugar beet pathosystem. The draft genome of R. solani AG2-2IIIB has an estimated size of 56.02 Mb, larger than any of the R. solani AGs sequenced to date. The genome of AG2-2IIIB has been predicted to harbor 11,897 protein-encoding genes, including a high number of carbohydrate-active enzymes (CAZymes). The highest number of CAZymes was observed for polysaccharide lyase family 1 (PL-1), glycoside hydrolase family 43 (GH-43), and carbohydrate esterase family 12 (CE-12). Eleven single-effector candidates were predicted based on AG2-2IIIB genome data. The RsLysM, RsRlpA, and RsCRP1 genes were highly induced upon early-stage infection of sugar beet seedlings, and heterologous expression in Cercospora beticola and model plant species demonstrated their involvement in virulence. However, despite the progress achieved thus far on the molecular interactions in this pathosystem, many aspects remain to be elucidated, including the development of efficient transformation systems, important for functional studies, and the silencing of undesirable traits in the sugar beet crop.  相似文献   

19.
During July 2004, wirestem was frequently observed on the seedlings of Betula nigra at Dehong district in Yunnan Province, China. Isolates of Rhizoctonia spp. consistently obtained from their diseased leaves, roots and stems were identified as belonging to binucleate Rhizoctonia anastomosis groups (AG) AG‐P and AG‐R, and R. solani AG‐I IB and AG‐4 HG‐I, based on cultural characteristics, nuclear staining, anastomisis reaction and analysis of their ITS rDNA region. The percentage of recovery of AG‐P, AG‐1, AG‐R and AG‐4 was 48%, 39%, 8% and 3%, respectively. This is the first report of wirestem of red birch cause by binucleate Rhizoctonia AG‐P and AG‐R, and R. solani AG‐1 IB and AG‐4 HG‐I in China.  相似文献   

20.
Kasiamdari  R.S.  Smith  S.E.  Smith  F.A.  Scott  E.S. 《Plant and Soil》2002,238(2):235-244
Root-infecting fungal pathogens and also parasites, which do not cause major disease symptoms cause problems of contamination in pot cultures of arbuscular mycorrhizal (AM) fungi. We investigated the effect of the AM fungus, Glomus coronatum Giovannetti on disease caused by binucleate Rhizoctonia sp. (BNR) and R. solani in mung bean in the absence (P0) and presence (P1) of added soil phosphorus (P). When G. coronatum and BNR or R. solani were inoculated at the same time, G. coronatum improved the growth of the plants and reduced colonization of roots by BNR, but not by R. solani. R. solani reduced the growth of non-mycorrhizal mung bean in P0 soil 6 weeks after inoculation, whereas BNR had no effect on growth. G. coronatum reduced the severity of disease caused by BNR or R. solani on mung bean in both soil P treatments. When G. coronatum was established in the roots 3 weeks before BNR or R. solani was added to the potting mix, there was no significant effect of BNR or R. solani on growth of mung bean. Prior colonization by G. coronatum slightly reduced indices of disease caused by BNR or R. solani. In both experiments, addition of P stimulated plant growth and reduced the colonization of roots by BNR, but had little effect on disease severity. We conclude that the reduction of the effect of BNR or R. solani on mung bean could not be explained by improved P nutrition, but could be attributed to the presence of G. coronatum within and among the roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号