首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the entry point for electrons into the respiratory chains of many bacteria and mitochondria of most eucaryotes. It couples electron transfer with the translocation of protons across the membrane, thus providing the proton motive force essential for energy-consuming processes. Electron microscopy revealed the ‘L’-shaped structure of the bacterial and mitochondrial complex with two arms arranged perpendicular to each other. Recently, we showed that the Escherichia coli complex I takes on another stable conformation with the two arms arranged side by side resulting in a horseshoe-shaped structure. This model reflects the evolution of complex I from pre-existing modules for electron transfer and proton translocation.  相似文献   

2.
Electron microscopy has demonstrated the unusual L-shaped structure of the respiratory complex I consisting of two arms, which are arranged perpendicular to each other. We found that the Escherichia coli complex I has an additional stable conformation, with the two arms arranged side by side, resulting in a horseshoe-shaped structure. The structure of both conformations was determined by means of electron microscopy of gold thioglucose-stained single particles. They were distinguished from each other by titration of the complex with polyethylene glycol and by means of analytical ultracentrifugation. The transition between the two conformations is induced by the ionic strength of the buffer and is reversible. Only the horseshoe-shaped complex I exhibits enzyme activity in detergent solution, which is abolished by the addition of salt. Therefore, it is proposed that this structure is the native conformation of the complex in the membrane.  相似文献   

3.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

4.
From phylogenetic sequence analysis, it can be concluded that the proton-pumping NADH:ubiquinone oxidoreductase (complex I) has evolved from preexisting modules for electron transfer and proton translocation. It is built up by a peripheral NADH dehydrogenase module, an amphipatic hydrogenase module, and a membrane-bound transporter module. These modules, or at least part of them, are also present in various other bacterial enzymes. It is assumed that they fulfill a similar function in complex I and related enzymes. Based on the function of the individual modules, it is possible to speculate about the mechanism of complex I. The hydrogenase module might work as a redox-driven proton pump, while the transporter module might act as a conformation-driven proton pump. This implies that complex I contains two energy-coupling sites. The NADH dehydrogenase module seems to be involved in electron transfer and not in proton translocation.  相似文献   

5.
The NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with a translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the electron transfer reaction and a membrane arm involved in proton translocation. The recently published X-ray structures of the complex revealed the presence of a unique 110 ? "horizontal" helix aligning the membrane arm. On the basis of this finding, it was proposed that the energy released by the redox reaction is transmitted to the membrane arm via a conformational change in the horizontal helix. The helix corresponds to the C-terminal part of the most distal subunit NuoL. To investigate its role in proton translocation, we characterized the electron transfer and proton translocation activity of complex I variants lacking either NuoL or parts of the C-terminal domain. Our data suggest that the H+/2e- stoichiometry of the ΔNuoL variant is 2, indicating a different stoichiometry for proton translocation as proposed from structural data. In addition, the same H+/e- stoichiometry is obtained with the variant lacking the C-terminal transmembraneous helix of NuoL, indicating its role in energy transmission.  相似文献   

6.
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy and X-ray crystallography revealed the two-part structure of the enzyme complex. A peripheral arm extending into the aqueous phase catalyzes the electron transfer reaction. Accordingly, this arm contains the redox-active cofactors, namely one flavin mononucleotide (FMN) and up to ten iron-sulfur (Fe/S) clusters. A membrane arm embedded in the lipid bilayer catalyzes proton translocation by a yet unknown mechanism. The binding site of the substrate (ubi) quinone is located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons across the membrane. In this review, the binding of the substrates, the intramolecular electron transfer, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratory.  相似文献   

7.
Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Å resolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.

An unusual ferredoxin completes a protein bridge that links the two arms of plant mitochondrial complex I and adjusts their angle in an open or closed conformation.  相似文献   

8.
The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex I) is still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of DeltapH and Deltapsi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization of the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force,DeltapH and Deltapsi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex I, we did not find indications for primary or secondary Na+ translocation by Y. lipolytica complex I.  相似文献   

9.
A theory of proton coupled electron transfer (PCET) is reviewed with application to charge transfer steps in the photosystem II oxygen-evolving complex (PSII/OEC). The relation between PCET when it is a concerted electron proton transfer (ETPT) process and hydrogen-atom transfer (HAT) reactions is discussed. Signatures expected for HAT reactions in terms of the size of the kinetic isotope effect and overall magnitude of the rate constant are discussed in the context of PSII/OEC. The formal similarity of ETPT to proton transfer and translocation is used to introduce a combined quantum mechanical (for the transferring protons) and molecular dynamics for the heavy-atom degrees of freedom approach. The method is used to examine double proton transfer in cytochrome c oxidase where two waters and a glutamate (Glu286) that is implicated in the proton translocation mechanism form a cyclic hydrogen bonded structure. Protonation of the glutamate is found to occur in agreement with experimental results.  相似文献   

10.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   

11.
Hunte C 《FEBS letters》2001,504(3):126-132
The ubiquinol:cytochrome c oxidoreductase (EC 1.20.2.2, QCR or cytochrome bc1 complex) is a component of respiratory and photosynthetic electron transfer chains in mitochondria and bacteria. The complex transfers electrons from quinol to cytochrome c. Electron transfer is coupled to proton translocation across the lipid bilayer, thereby generating an electrochemical proton gradient, which conserves the free energy of the redox reaction. The yeast complex was crystallized with antibody Fv fragments, a promising technique to obtain well-ordered crystals from membrane proteins. The high-resolution structure of the yeast protein reveals details of the catalytic sites of the complex, which are important for electron and proton transfer.  相似文献   

12.
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and remains by far the least understood enzyme complex of the respiratory chain. It consists of a peripheral arm harbouring all known redox active prosthetic groups and a membrane arm with a yet unknown number of proton translocation sites. The ubiquinone reduction site close to iron-sulfur cluster N2 at the interface of the 49-kDa and PSST subunits has been mapped by extensive site directed mutagenesis. Independent lines of evidence identified electron transfer events during reduction of ubiquinone to be associated with the potential drop that generates the full driving force for proton translocation with a 4H+/2e stoichiometry. Electron microscopic analysis of immuno-labelled native enzyme and of a subcomplex lacking the electron input module indicated a distance of 35-60 Å of cluster N2 to the membrane surface. Resolution of the membrane arm into subcomplexes showed that even the distal part harbours subunits that are prime candidates to participate in proton translocation because they are homologous to sodium/proton antiporters and contain conserved charged residues in predicted transmembrane helices. The mechanism of redox linked proton translocation by complex I is largely unknown but has to include steps where energy is transmitted over extremely long distances. In this review we compile the available structural information on complex I and discuss implications for complex I function.  相似文献   

13.
Bridges HR  Bill E  Hirst J 《Biochemistry》2012,51(1):149-158
In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use M?ssbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.  相似文献   

14.
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first of the respiratory complexes providing the proton motive force which is essential for energy consuming processes like the synthesis of ATP. Homologues of this complex exist in bacteria, archaea, in mitochondria of eukaryotes and in chloroplasts of plants. The bacterial and mitochondrial complexes function as NADH dehydrogenase, while the archaeal complex works as F420H2 dehydrogenase. The electron donor of the cyanobacterial and plastidal complex is not yet known. Despite the different electron input sites, 11 polypeptides constitute the structural framework for proton translocation and quinone binding in the complex of all three domains of life. Six of them are also present in a family of membrane-bound multisubunit [NiFe] hydrogenases. It is discussed that they build a module for electron transfer coupled to proton translocation.  相似文献   

15.
《BBA》2020,1861(7):148185
In the aerobic respiratory chains of many organisms, complex I functions as the first electron input. By reducing ubiquinone (Q) to ubiquinol, it catalyzes the translocation of protons across the membrane as far as ~200 Å from the site of redox reactions. Despite significant amount of structural and biochemical data, the details of redox coupled proton pumping in complex I are poorly understood. In particular, the proton transfer pathways are extremely difficult to characterize with the current structural and biochemical techniques. Here, we applied multiscale computational approaches to identify the proton transfer paths in the terminal antiporter-like subunit of complex I. Data from combined classical and quantum chemical simulations reveal for the first time structural elements that are exclusive to the subunit, and enables the enzyme to achieve coupling between the spatially separated Q redox reactions and proton pumping. By studying long time scale protonation and hydration dependent conformational dynamics of key amino acid residues, we provide novel insights into the proton pumping mechanism of complex I.  相似文献   

16.
Outi Haapanen  Vivek Sharma 《BBA》2018,1859(7):510-523
Respiratory complex I is a giant redox-driven proton pump, and central to energy production in mitochondria and bacteria. It catalyses the reduction of quinone to quinol, and converts the free energy released into the endergonic proton translocation across the membrane. The proton pumping sets up the proton electrochemical gradient, which propels the synthesis of ATP. Despite the availability of extensive biochemical, biophysical and structural data on complex I, the mechanism of coupling between the electron and proton transfer reactions remain uncertain. In this work, we discuss current state-of-the-art in the field with particular emphasis on the molecular mechanism of respiratory complex I, as deduced from computational modeling and simulation approaches, but in strong alliance with the experimental data. This leads to novel synthesis of mechanistic ideas on a highly complex enzyme of the electron transport chain that has been associated with a number of mitochondrial and neurodegenerative disorders.  相似文献   

17.
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.  相似文献   

18.
The mitochondrial complex I is the first component of the respiratory chain coupling electron transfer from NADH to ubiquinone to proton translocation across the inner membrane of the organelle. The enzyme from the fungus Neurospora crassa is similar to that of other organisms in terms of protein and prosthetic group composition, structure, and function. It contains a high number of polypeptide subunits of dual genetic origin. Most of its subunits were cloned, including those binding redox groups. Extensive gene disruption experiments were conducted, revealing many aspects of the structure, function, and biogenesis of complex I. Complex I is essential for the sexual phase of the life cycle of N. crassa, but not for the asexual stage. In addition to complex I, the fungal mitochondria contain at least three nonproton-pumping alternative NAD(P)H dehydrogenases feeding electrons to the respiratory chain from either matrix or cytosolic substrates.  相似文献   

19.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex.  相似文献   

20.
Chemical modification of the bovine heart cytochrome bc1 complex with N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) has been reported to inhibit the proton pumping activity without affecting the rate of electron transfer to ferricytochrome c. This study aims to examine the effect of EEDQ on energy-linked reversed electron transfer in the bc1 complex reconstituted into potassium-loaded phospholipid vesicles. Generation of a valinomycin-mediated potassium-diffusion potential induced the reduction of cytochrome b in the reconstituted bc1 complex in the presence of sodium ascorbate. The time course of the cytochrome b reduction was well correlated with that of the absorbance change of safranine, an optical probe for measuring membrane potential. Treatment of the bc1 complex with EEDQ caused a decrease in the potential-induced reduction of cytochrome b as well as in the proton translocation activity. But a significant loss in the ubiquinol-cytochrome c reducing activity was not observed in the EEDQ-treated bc1 complex. The time- and concentration-dependent effect of EEDQ on the reversed electron transfer was well correlated with that of the proton translocation activity of the bc1 complex. These findings strongly support the idea that the potential-induced reversal of electron transfer is coupled to the reverse flow of protons in the cytochrome bc1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号