首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.  相似文献   

2.
SPARC, a matricellular glycoprotein with important biological functions.   总被引:25,自引:0,他引:25  
SPARC (secreted protein, acidic and rich in cysteine) is a unique matricellular glycoprotein that is expressed by many different types of cells and is associated with development, remodeling, cell turnover, and tissue repair. Its principal functions in vitro are counteradhesion and antiproliferation, which proceed via different signaling pathways. SPARC consists of three domains, each of which has independent activity and unique properties. The extracellular calcium binding module and the follistatin-like module have been recently crystallized. Specific interactions between SPARC and growth factors, extracellular matrix proteins, and cell surface proteins contribute to the diverse activities described for SPARC in vivo and in vitro. The location of SPARC in the nuclear matrix of certain proliferating cells, but only in the cytosol of postmitotic neurons, indicates potential functions of SPARC as a nuclear protein, which might be involved in the regulation of cell cycle progression and mitosis. High levels of SPARC have been found in adult eye, and SPARC-null mice exhibit cataracts at 1-2 months of age. This animal model provides an excellent opportunity to confirm and explore some of the properties of SPARC, to investigate cataractogenesis, and to study SPARC-related family proteins, e.g., SC1/hevin, a counteradhesive matricellular protein that might functionally compensate for SPARC in certain tissues.(J Histochem Cytochem 47:1495-1505, 1999)  相似文献   

3.
Although bone is composed primarily of extracellular matrix (ECM), the dynamic role that the ECM plays in regulating bone remodeling secondary to estrogen loss is relatively unexplored. Previous studies have shown that mice deficient in the matricellular protein thrombospondin-2 (TSP2-null) form excess endocortical bone; thus, we postulated that enhanced bone formation in TSP2-null mice could protect against ovariectomy (OVX)-induced bone loss. Wild-type (WT) OVX mice showed a significant loss of both midfemoral endocortical and proximal tibial trabecular bone, but OVX did not significantly alter TSP2-null bone. TSP2-null mice showed an increase in bone formation, as indicated by a 70% increase in serum osteocalcin two weeks post OVX and a two-fold increase in bone formation rate (BFR) five weeks post OVX as measured by dynamic histomorphometry. WT animals showed only a 20% increase in serum osteocalcin at two weeks and no change in BFR at five weeks. This increase in bone formation in TSP2-null OVX mice was accompanied by a three-fold increase in osteoprogenitor number. Although these results provide a partial explanation for the maintenance of bone geometry post-OVX, TSP2-null mice five weeks post-OVX also showed a significantly lower level of bone resorption than OVX WT mice, as determined by serum levels of the amino-terminal telopeptide of type I collagen (NTx). We conclude that the absence of TSP2 protects against OVX-induced bone loss by two complementary processes: increased formation and decreased resorption.  相似文献   

4.
The publisher regrets that the above article was published with several typographical errors. The corrected version appears on the following pages. SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell–matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

5.
SPARC, a matricellular protein: at the crossroads of cell-matrix.   总被引:17,自引:0,他引:17  
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

6.
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

7.
Glomerular mesangial cells both synthesize and respond to insulin-like growth factor-1 (IGF-1). Increased activity of the IGF signaling pathway has been implicated as a major contributor to renal enlargement and subsequent development of diabetic nephropathy. Secreted protein acidic and rich in cysteine (SPARC), a matricellular protein, has been shown to modulate the interaction of cells with growth factors and extracellular matrix. We have reported that primary glomerular mesangial cells derived from SPARC-null mice exhibit an accelerated rate of proliferation and produce substantially decreased levels of transforming growth factor beta1 (TGF-beta1) in comparison to their wild-type counterparts (Francki et al. [1999] J. Biol. Chem. 274: 32145-32152). Herein we present evidence that SPARC modulates IGF-dependent signaling in glomerular mesangial cells. SPARC-null mesangial cells produce increased amounts of IGF-1 and -2, as well as IGF-1 receptor (IGF-1R) in comparison to wild-type cells. Addition of recombinant SPARC to SPARC-null cells inhibited IGF-1-stimulated mitogen activated protein kinase (MAPK) activation and DNA synthesis. We also show that the observed accelerated rate of basal and IGF-1-stimulated proliferation in mesangial cells derived from SPARC-null animals is due, at least in part, to markedly diminished levels of cyclin D1 and the cyclin-dependent kinase (cdk) inhibitors p21 and p27. Since expression of SPARC in the glomerulus is especially prominent during renal injury, our findings substantiate previous claims that SPARC is involved in glomerular remodeling and repair, a process commonly associated with mesangioproliferative glomerulonephritis and diabetic nephropathy.  相似文献   

8.
Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM40) is one of the most abundant non-collagenous protein expressed in mineralized tissues. This review will focus on elucidating functional roles of SPARC in bone formation building upon results from non-mineralized cells and tissues, the phenotype of SPARC-null bones, and recent discoveries of human diseases with either dysregulated expression of SPARC or mutations in the gene encoding SPARC that give rise to bone pathologies. The capacity of SPARC to influence pathways involved in extracellular matrix assembly such as procollagen processing and collagen fibril formation as well as the capacity to influence osteoblast differentiation and osteoclast activity will be addressed. In addition, the potential for SPARC to regulate cross-linking of extracellular matrix proteins by members of the transglutaminase family of enzymes is explored. Elucidating defined biological functions of SPARC in terms of bone formation and turnover are critical. Further insight into specific cellular mechanisms involved in the formation and homeostasis of mineralized tissues will lead to a better understanding of disease progression.  相似文献   

9.
10.
Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation.  相似文献   

11.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

12.
Summary Bone sialoprotein (BSP) is a prominent component of bone tissues that is expressed by differentiated osteoblastic cells. Affinity-purified antibodies to BSP were prepared and used in combination with biotin-conjugated peroxidase-labeled second antibodies to demonstrate the distribution of this protein in sections of demineralized foetal porcine tibia and calvarial bone. Staining for BSP was observed in the matrix of mineralized bone and also in the mineralized cartilage and associated cells of the epiphysis, but was not observed in the hypertrophic zone nor in any of the soft tissues including the periosteum. In comparison, SPP-1 (osteopontin) and SPARC (osteonectin), which are also major proteins in porcine bone, were observed in the cartilage as well as in the mineralized bone matrix, In addition, SPARC was also present in soft connective tissues. Although SPP-1 distribution was more restricted than SPARC, hypertrophic chondrocytes, periosteal cells and some stromal cells in the bone marrow spaces were stained in addition to osteoblastic cells. The variations in the distribution and cellular expression of BSP, SPARC and SPP-1 in bone and mineralizing cartilage indicate these proteins perform different functions in the formation and remodelling of mineralized connective tissues.  相似文献   

13.
Glaucoma is a disease frequently associated with elevated intraocular pressure that can be alleviated by filtration surgery. However, the post-operative subconjunctival scarring response which blocks filtration efficiency is a major hurdle to the achievement of long-term surgical success. Current application of anti-proliferatives to modulate the scarring response is not ideal as these often give rise to sight-threatening complications. SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein involved in extracellular matrix (ECM) production and organization. In this study, we investigated post-operative surgical wound survival in an experimental glaucoma filtration model in SPARC-null mice. Loss of SPARC resulted in a marked (87.5%) surgical wound survival rate compared to 0% in wild-type (WT) counterparts. The larger SPARC-null wounds implied that aqueous filtration through the subconjunctival space was more efficient in comparison to WT wounds. The pronounced increase in both surgical survival and filtration efficiency was associated with a less collagenous ECM, smaller collagen fibril diameter, and a loosely-organized subconjunctival matrix in the SPARC-null wounds. In contrast, WT wounds exhibited a densely packed collagenous ECM with no evidence of filtration capacity. Immunolocalization assays confirmed the accumulation of ECM proteins in the WT but not in the SPARC-null wounds. The observations in vivo were corroborated by complementary data performed on WT and SPARC-null conjunctival fibroblasts in vitro. These findings indicate that depletion of SPARC bestows an inherent change in post-operative ECM remodeling to favor wound maintenance. The evidence presented in this report is strongly supportive for the targeting of SPARC to increase the success of glaucoma filtration surgery.  相似文献   

14.
SPARC (secreted protein, acidic, and rich in cysteine) is a matricellular protein that is present in the intervertebral disc; in man, levels of SPARC decrease with aging and degeneration. In this study, we asked whether targeted deletion of SPARC in the mouse influenced disc morphology. SPARC-null and wild-type (WT) mice were studied at 0.3-21 months of age. Radiologic examination of spines from 2-month-old SPARC-null mice revealed wedging, endplate calcification, and sclerosis, features absent in age-matched WT spines. Discs from 3-month-old SPARC-null mice had a greater number of annulus cells than those of WT animals (1884.6 +/- 397.9 [mean +/- SD] vs 1500.2 +/- 188.2, p=0.031). By 19 months discs from SPARC-null mice contained fewer cells than WT counterparts (1383.6 +/- 363.3 vs 1466.8 +/- 148.0, p=0.033). Histology of midsagittal spines showed herniations of lower lumbar discs of SPARC-null mice ages 14-19 months; in contrast, no herniations were seen in WT age-matched animals. Ultrastructural studies showed uniform collagen fibril diameters in the WT annulus, whereas in SPARC-null disc fibrils were of variable size with irregular margins. Consistent with the connective tissue deficits observed in other tissues of SPARC-null mice, our findings support a fundamental role for SPARC in the production, assembly, or maintenance of the disc extracellular matrix.  相似文献   

15.
Expression of secreted protein acidic and rich in cysteine (SPARC)/osteonectin, a collagen-binding matricellular protein, is frequently associated with tissues with high rates of collagen turnover, such as bone. In the oral cavity, expression of SPARC/osteonectin has been localized to the periodontal ligament (PDL), a collagen-rich tissue with high rates of collagen turnover. The PDL is critical for tooth position within the alveolar bone and for absorbing forces generated by chewing. To characterize the function of SPARC/osteonectin in PDL, SPARC/osteonectin expression in murine PDL was evaluated by immunochemistry at 1, 4, 6, and >18 months. Highest levels of SPARC/osteonectin were detected at 1 and >18 months, with decreased levels associated with adult (4–6 months) PDL. To determine whether the absence of SPARC/osteonectin expression influenced cellular and fibrillar collagen content in PDL, PDL of SPARC-null mice was evaluated using histological stains and compared with that of wild-type (WT). Our results demonstrated decreased numbers of nuclei in PDL of SPARC-null mice at 1 month. In addition, decreased collagen volume fractions were found at 1 and >18 months and decreases in thick collagen fiber volume fraction were detected at 4, 6, and >18 months in SPARC-null PDL. The greatest differences in cell number and in collagen content between SPARC-null and WT PDL coincided with ages at which levels of SPARC/osteonectin expression were highest in WT PDL, at 1 and >18 months. These results support the hypothesis that SPARC/osteonectin is critical in the control of tissue collagen content and indicate that SPARC/osteonectin is necessary for PDL homeostasis. (J Histochem Cytochem 58:871–879, 2010)  相似文献   

16.
The impairment of angiogenesis in aging has been attributed, in part, to alterations in proteins associated with the extracellular matrix (ECM). SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is a matricellular protein that regulates endothelial cell function as well as cell-ECM interactions. We have previously shown that angiogenesis, as reflected by fibrovascular invasion into subcutaneously implanted polyvinyl alcohol (PVA) sponges, is increased in SPARC-null mice (6-9 months of age) relative to their wild-type (WT) counterparts. In this study, we define the influence of aging on (a) the expression of SPARC and (b) fibrovascular invasion into sponge implants in SPARC-null and WT mice. The expression of SPARC in fibroblasts and endothelial cells derived from young donors (humans mean age less than 30 years and mice 4-6 months of age) and old donors (humans mean age over 65 years and mice 22-27 months of age) decreased 1.6 to 2.3-fold with age. Analysis of fibrovascular invasion into sponges implanted into old (22-27 months) SPARC-null and WT mice showed no differences in percent area of invasion or collagenous ECM. Moreover, sponges from old SPARC-null and WT mice contained similar levels of VEGF that were significantly lower than those from young (4-6 months) mice. In contrast to fibroblasts from young SPARC-null mice, dermal fibroblasts from old SPARC-null mice did not migrate farther, proliferate faster, or produce greater amounts of VEGF relative to their old WT counterparts. However, when stimulated with TGF-beta1, primary cells isolated from the sponge implants, and dermal fibroblasts from both old SPARC-null and WT mice, showed marked increases in VEGF secretion. These data indicate that aging results in a loss of enhanced angiogenesis in SPARC-null mice, as a result of the detrimental impact of age on cellular functions, collagen deposition, and VEGF synthesis. However, the influence of aging on these processes may be reversed, in part, by growth factor stimulation.  相似文献   

17.

Background  

SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them.  相似文献   

18.
19.
Secreted protein acidic and rich in cystein (SPARC) is a secreted glycoprotein involved in several biological processes such as tissue remodeling, embryonic development, cell/extracellular matrix interactions, and cell migration. In particular, SPARC affects bone remodeling through the regulation of both differentiation/survival of osteoblasts and bone extracellular matrix synthesis/turnover. Here, we investigated SPARC subcellular localization in the human osteoblastic HOBIT cell line by immunocytochemistry and western blot analysis. We show that, under normal exponential cell growth conditions, SPARC localized both to cell nucleus and to cytoplasm, with no co-localization on actin stress fibers. However, in colchicine-treated HOBIT cells and human primary osteoblasts undergoing blebs formation, SPARC showed a different cellular distribution, with an additional marked compartmentalization inside the blebs, where it co-localized with globular actin and actin-binding proteins such as alpha-actinin, cortactin, and vinculin. Moreover, we demonstrate by an in vitro assay that the addition of SPARC to actin and alpha-actinin inhibited the formation of cross-linked actin filaments and disrupted newly formed filaments, most likely due to a direct interaction between SPARC and alpha-actinin, as indicated by immunoprecipitation assay. The specific silencing of SPARC RNA expression markedly decreased the ability of colchicine-treated HOBIT cells to undergo blebbing, suggesting a direct role for SPARC in cell morphology dynamics during cytoskeletal reorganization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号