共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrile hydratase (NHase, EC 3.5.5.1) activity of Rhodococcus rhodochrous PA-34 was explored for the conversion of 3-cyanopyridine to nicotinamide. The NHase activity (∼18 U/mg dry cell weight, dcw)
was observed in 0.1 M phosphate buffer, pH 8.0 containing 1M 3-cyanopyridine as substrate, and 0.75 mg of resting cells (dry
cell weight) per ml reaction mixture at 40°C. However, 25°C was more suitable for prolonged batch reaction at high substrate
(3-cyanopyridine) concentration. In a batch reaction (1 liter), 7M 3-cyanopyridine (729 g) was completely converted to nicotinamide
(855 g) in 12h at 25°C using 9.0 g resting cells (dry cell weight) of R. rhodochrous PA-34. 相似文献
2.
Butyramide is an important chemical commodity, which is used for the synthesis of hydroxamic acids and electrorheological
fluids and for the preparation of β-amodoorganotin compounds. The nitrile hydratase (Nhase) of Rhodococcus rhodochrous PA-34 catalyzed the conversion of butyronitrile to butyramide. The maximum Nhase activity [18 U/mg dry cell weight (dcw)]
of whole cells of R. rhodochrous PA-34 was observed at pH 7.0 with 10% (v/v) butyronitrile and 1 mg cells (dcw)/ml reaction mixture at 10°C. The cells of
R. rhodochrous PA-34 retained almost 50% activity when incubated for 1 h in the presence of 85% (v/v) butyronitrile. A yield of 597 g of
butyramide (6.8 M) was obtained using 60% (v/v) butyronitrile, 1 g cells (dry weight) in a 1-l batch reaction at 10°C for
6 h. 相似文献
3.
The nitrile hydratase (NHase) gene of Rhodococcus rhodochrous PA-34 mutant 4D has been amplified by PCR, cloned and expressed in Pichia pastoris KM-71 using pHIL-D2 expression vector. The recombinant P. pastoris KM-71 exhibited active expression of the nitrile hydratase gene of the mutant 4D and has shown very good potential for the transformation of 3-cyanopyridine to nicotinamide. The recombinant P. pastoris KM-71 exhibited maximum NHase activity when cultivated in YPD medium was supplemented with 0.4?mM cobalt ions. The recombinant P. pastoris KM-71 showed maximum nitrile hydratase enzyme production, when incubated at 30?°C for 15?h. 相似文献
4.
Tatyana E. Pogorelova Ludmila E. Ryabchenko Nicola I. Sunzov Alexander S. Yanenko 《FEMS microbiology letters》1996,144(2-3):191-195
Abstract The effects of cobalt ions on the activities of Rhodococcus rhodochrous M8 enzymes for nitrile utilization, nitrile hydratase and amidase, were investigated. In contrast to amidase, synthesis of nitrile hydratase and its activity required cobalt ions in the growth medium. Northern blot analysis showed that in the presence of cobalt ions, the level of mRNA for nitrile hydratase genes was several times higher than that under cobalt-limited conditions. It was assumed that the low nitrile hydratase activity in cells grown in the absence of cobalt ions is connected either with the weak expression of nitrile hydratase genes or with the rapid degradation of nitrile hydratase mRNA. 相似文献
5.
Rhodococcus pyridinovorans MW3 was isolated from an arable land of manioc from the Congo for its ability to transform acrylonitrile to acrylamide. This strain contains a cobalt nitrile hydratase (NHase) showing high sequence homology with NHases so far described. The specific NHase activity was 97 U mg(-1) dry wt. NHase production by R. pyridinovorans MW3 was urea and Co-dependent. The NHase was active for acrylamide up to 60% (w/v) indicating its potential for acrylamide production. 相似文献
6.
7.
Bu-Youn Kim Jong-Chul Kim Hyune-Hwan Lee Hyung-Hwan Hyun 《Biotechnology and Bioprocess Engineering》2001,6(1):11-17
To enhance the productivity and activity of nitrile hydratase inRhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited
level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both
increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold
compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when
using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture. 相似文献
8.
Bi-Shuang Chen Linda G. Otten Verena Resch Gerard Muyzer Ulf Hanefeld 《Standards in genomic sciences》2013,9(1):175-184
Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. 相似文献
9.
Song L Wang M Shi J Xue Z Wang MX Qian S 《Biochemical and biophysical research communications》2007,362(2):319-324
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion. 相似文献
10.
Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270 总被引:1,自引:0,他引:1
Nitrile hydratase (NHase, EC 4.2.1.84) from Rhodococcus sp. AJ270 was purified with 23.96% yield after sonication, ammonium sulfate fractionation, ion exchange, hydrophobic and gel-filtration column chromatography. The enzyme showed intriguing characteristics: it hydrated not only aliphatic and heterocyclic nitriles but also aromatic ones. Some substrates were also hydrated enantioselectively to the corresponding amides. The enantiomeric excess (ee) value of the enzyme hydrating trans-2,2-dimethyl-3-phenylcyclopropanecarbonitrile was 84.7. The enzyme is composed of two subunits: an alpha subunit and beta subunit of 22 975 Da and 23 493 Da, respectively. The optimal temperature and pH for the catalytic reaction of the enzyme was 25 degrees C and pH 7.6. The enzyme activity of the purified NHase was strongly inhibited by some oxidizing agents and heavy metals. 相似文献
11.
Raj J Sharma NN Prasad S Bhalla TC 《Journal of industrial microbiology & biotechnology》2008,35(1):35-40
The nitrile hydratase (Nhase) induced cells of Rhodococcus rhodochrous PA-34 catalyzed the conversion of acrylonitrile to acrylamide. The cells of R. rhodochrous PA-34 immobilized in 2% (w/v) agar (1.76 mg dcw/ml agar matrix) exhibited maximum Nhase activity (8.25 U/mg dcw) for conversion
of acrylonitrile to acrylamide at 10°C in the reaction mixture containing 0.1 M potassium phosphate buffer (pH 7.5), 8% (w/v)
acrylonitrile and immobilized cells equivalent to 1.12 mg dcw (dry cell weight) per ml. In a partitioned fed batch reaction
at 10°C, using 1.12 g dcw immobilized cells in a final volume of 1 l, a total of 372 g of acrylonitrile was completely hydrated
to acrylamide (498 g) in 24 h. From the above reaction mixture 87% acrylamide (432 g) was recovered through crystallization
at 4°C. By recycling the immobilized biocatalyst (six times), a total of 2,115 g acrylamide was produced. 相似文献
12.
Hourai S Miki M Takashima Y Mitsuda S Yanagi K 《Biochemical and biophysical research communications》2003,312(2):340-345
The crystal structure of the nitrile hydratase (NHase) from Bacillus smithii SC-J05-1 was determined. Our analysis of the structure shows that some residues that seem to be responsible for substrate recognition are different from those of other NHases. In particular, the Phe52 in the beta subunit of NHase from B. smithii covers the metal center partially like a small lid and narrows the active site cleft. It is well known that the NHase from B. smithii especially prefers aliphatic nitriles for its substrate rather than aromatic ones, and we can now infer that the Phe52 residue may play a key role in the substrate specificity for this enzyme. This finding leads us to suggest that substitution of these residues may alter the substrate specificity of the enzyme. 相似文献
13.
Michelle L. Gradley Clive J. F. Deverson Christopher J. Knowles 《Archives of microbiology》1994,161(3):246-251
Whole cells and cell-free extracts derived from Rhodococcus rhodochrous NCIMB 11216 were shown to hydrolyse both aliphatic and aromatic nitriles, when the organism had been grown on either propionitrile or benzonitrile as the source of carbon and nitrogen. Whole cell suspensions and cell-free extracts derived from bacteria grown on either substrate were able to biotransform R-(-),S-(+)-2-methylbutyronitrile. The S-(+) enantiomer was biotransformed more rapidly than the the R-(-) enantiomer. For whole cell biotransformations at 30°C, the maximum enantiomeric excess (ee) of the remaining R-(-)-2-methylbutyronitrile was 93% when 70% of the R-(-) enantiomer had been converted to the product, 2-methylbutyric acid. For the corresponding biotransformation at 4°C, there was an ee of 93% for the residual R-(-) enantiomer of the substrate when only 60% of it had been converted to product. For biotransformations by cell-free extracts at 30°C the 2-methylbutyric acid product had an ee of 17% for the S-(+) enantiomer at the time of optimal ee for the remaining R-(-) enantiomer of the substrate. In contrast, when the reaction was carried out by whole cells, the ee for the product acid was 0.36%. This was probably due to further, non-selective metabolism of the acid, which was especially significant at the beginning of the reaction. At both temperatures, the ee for the S-(+) enantiomer of 2-methylbutyric acid was at a maximum in the early stage of the biotransformation; for example, at 4°C the maximum detectable ee was 100% when the yield was 11%.Abbreviations EDTA
Ethylenediaminetetraacetic acid
- ee
enantiomeric excess
- FID
flame ionisation detector
- GC
gas chromatography
-
1HNMR
H nuclear magnetic resonance
-
K
m
Michaelis constant
- NCIMB
National Collection of Industrial and Marine Bacteria
- td
doubling time
-
V
max
Maximum velocity 相似文献
14.
Structural analysis of an extracellular polysaccharide produced by Rhodococcus rhodochrous strain S-2 总被引:2,自引:0,他引:2
Urai M Anzai H Ogihara J Iwabuchi N Harayama S Sunairi M Nakajima M 《Carbohydrate research》2006,341(6):766-775
A possibility has been suggested of applying the EPS produced by Rhodococcus rhodochrous strain S-2 (S-2 EPS) to the bioremediation of oil-contaminated environments, because its addition, together with minerals, to oil-contaminated seawater resulted in emulsification of the oil, increased the degradation of polyaromatic hydrocarbons (PAH) of the oil, and led to the dominance of PAH-degrading marine bacteria. To understand the underlying principles of these phenomena, we determined the chemical structure of the sugar chain of S-2 EPS. The EPS was found to be composed of D-galactose, D-mannose, D-glucose, and D-glucuronic acid, in a molar ratio of 1:1:1:1. In addition, 0.8% (w/w) of octadecanoic acid and 2.7% (w/w) of hexadecanoic acid were also contained in its structure. By 1H and 13C NMR spectroscopy, including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments, as well as chemical and enzymatic analyses, the polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: (see formula in text). 相似文献
15.
Yun Hee Choi Ki-Nam Uhm Hyung-Kwoun Kim 《Journal of Molecular Catalysis .B, Enzymatic》2008,55(3-4):157-163
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin. 相似文献
16.
Yue Shi Huimin Yu Xudong Sun Zhuoling Tian Zhongyao Shen 《Enzyme and microbial technology》2004,35(6-7):557-562
To obtain a recombinant Rhodococcus or Nocardia with not only higher enzymatic activity but also better operational stability and product-tolerance ability for bioconversion of acrylamide from acrylonitrile, an active and stable expression system of nitrile hydratase (NHase) was tried to construct as the technical platform of genetic manipulations. Two NHase genes, NHBA and NHBAX, from Nocardia YS-2002 were successfully cloned, based on bioinformatics design of PCR primers, and inserted into plasmid pUC18 and pET32a, respectively. Then, two recombinant Escherichia coli strains, JM105 (pUC18-NHBA) and BL21 (DE3) (pET32a-NHBAX) were constructed and their expressions of NHase were focused. The induction results showed that there was either no NHase activity in JM105 (pUC18-NHBA), or as low as 0.04 U (1 U=1 μmol acrylamide min−1 mg−1 dry cell) in BL21 (DE3) (pET32a-NHBAX). SDS-PAGE results showed that the -subunit of NHBA and NHBAX could not be efficiently expressed in both recombinant E. coli strains. The novel Pichia pastoris system was also applied to express NHase, but the expression level remained quite low (0.5–0.6 U) and the protein was unstable. For solving this problem, a possible genetic strategy, site-directed mutagenesis of the -subunit of the NHase was carried out. After the successful mutagenesis of the original rare start codon gtg into atg, a new recombinant strain, E. coli XL1-Blue (pUC18-NHBAM), was screened and the NHase activity stably reached as high as 51 U under the same induction conditions. 相似文献
17.
Muconate cycloisomerase (MCI) was purified from Rhodococcus rhodochrous 89 grown on phenol. The enzyme appears to contain two different type subunits with molecular masses 35.5 and 37 kD. The N-terminal amino acid sequence of both subunits showed more similarity to corresponding enzymes from gram-negative bacteria than to one from Rhodococcus opacus 1CP. MCI from R. rhodochrous 89, like analogous enzymes from gram-negative bacteria, can convert 2-chloromuconate (2-CM) with the formation of both, 2- and 5-chloromuconolactones (CML) as intermediates. Nevertheless, its unique ability to convert 5-CML to cis- but not to trans-dienelactone sets it apart from all known chloromuconate cycloisomerases from gram-negative and gram-positive bacteria. 相似文献
18.
Rhodococcus ruber CGMCC309菌株为酰胺酶及腈水解酶双重缺陷菌株,研究表明该菌能产宽泛底物特异性的腈水合酶。对该菌株产生的新型腈水合酶(NHase-3090)进行纯化和结晶,并研究了其酶学性质。采用疏水、离子交换及凝胶过滤3种层析方法,使该酶纯化倍数达到17.14,得率高达26.2%。电泳分析表明,全酶分子量为105 kDa,由α(24.3 k Da)和β(28.0k Da)2个亚基组成,并构成α2β2四聚体。酶的最适p H和温度分别为7.5和30℃。该酶明显受不同金属离子影响。动力学研究表明,Km为178.8 m M;Vmax为209.1μmol/L·min·mg。研究发现3种金属离子Zn~(2+),CO~(2+)和Cd~(2+)有利于酶蛋白结晶。结晶最佳条件是:采用112-34#试剂(0.05mol/L水合硫酸镉、0.1mol/L HEPS和1.0mol/L三水醋酸钠),蛋白质浓度为15 mg/ml,结晶温度为16℃,p H为7.5,结晶时间为30 d。腈水合酶蛋白单晶经X射线衍射,分辨率达到了3.7。该腈水合酶的纯化和结晶为进一步深入研究其结构和功能奠定了基础。 相似文献
19.
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the α- and β-subunits were transcribed as one unit and the gene encoding
the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO4 could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k
protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of
S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile. 相似文献
20.
The cellsof Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature
for the activity of nitrile hydratase in both the free and immobilized cells were 7.4 and 45°C, respectively, yet the optinum
temperature for acrylamide production by the immobilized cells was 20°C. The nitrile hydratase of the immobilized cells was
more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached
about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding
to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly decreased with repeated use. However,
the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms
of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to
be of commercial use without further purification. 相似文献