首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X Ma  Y Shao  H Zheng  M Li  W Li  L Xue 《Cell death & disease》2013,4(10):e864
Loss of the cell polarity gene could cooperate with oncogenic Ras to drive tumor growth and invasion, which critically depends on the c-Jun N-terminal Kinase (JNK) signaling pathway in Drosophila. By performing a genetic screen, we have identified Src42A, the ortholog of mammalian Src, as a key modulator of both RasV12/lgl−/− triggered tumor invasion and loss of cell polarity gene-induced cell migration. Our genetic study further demonstrated that the Bendless (Ben)/dUev1a ubiquitin E2 complex is an essential regulator of Src42A-induced, JNK-mediated cell migration. Furthermore, we showed that ectopic Ben/dUev1a expression induced invasive cell migration along with increased MMP1 production in wing disc epithelia. Moreover, Ben/dUev1a could cooperate with RasV12 to promote tumor overgrowth and invasion. In addition, we found that the Ben/dUev1a complex is required for ectopic Src42A-triggered cell death and endogenous Src42A-dependent thorax closure. Our data not only provide a mechanistic insight into the role of Src in development and disease but also propose a potential oncogenic function for Ubc13 and Uev1a, the mammalian homologs of Ben and dUev1a.  相似文献   

2.
Objectives: The focus of this study was to determine the dedicator of cytokinesis 2 (DOCK2), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase-1 (JNK) and Akt signals involved in CXCL13-mediated prostate cancer (PCa) cell invasion and proliferation. Materials and methods: Androgen-sensitive (LNCaP), hormone-refractory (PC3) cells and normal cells (RWPE-1) were used to determine CXCL13-mediated PCa cell invasion and proliferation. Immuno-blotting, fast activated cell-based (FACE) ELISA, caspase activity, cell invasion and proliferation assays were performed to ascertain some of the signalling events involved in PCa cell proliferation and invasion. Results: Unlike androgen-sensitive LNCaP cells, we report for the first time that the hormone-refractory cell line, PC3, expresses DOCK2. CXCL13-mediated LNCaP and PC3 cell invasion was regulated by Akt and ERK1/2 activation in a DOCK2-independent fashion. CXCL13 also promoted LNCaP cell proliferation in a JNK-dependent fashion even in the absence of DOCK2. In contrast, CXCL13 induced PC3 cell proliferation through JNK activation, which required DOCK2. Conclusions: Our results show CXCL13-mediated PCa cell invasion requires Akt and ERK1/2 activation and suggests a new role for DOCK2 in proliferation of hormone-refractory CXCR5-positive PCa cells.  相似文献   

3.
4.
Cell polarity and cell proliferation can be coupled in animal tissues, but how they are coupled is not understood. In Drosophila imaginal discs, loss of the neoplastic tumor suppressor gene scribble (scrib), which encodes a multidomain scaffolding protein, disrupts epithelial organization and also causes unchecked proliferation. Using an allelic series of mutations along with rescuing transgenes, we have identified domain requirements for polarity, proliferation control, and other Scrib functions. The leucine-rich repeats (LRR) tether Scrib to the plasma membrane, are both necessary and sufficient to organize a polarized epithelial monolayer, and are required for all proliferation control. The PDZ domains, which recruit the LRR to the junctional complex, are dispensable for overall epithelial organization. PDZ domain absence leads to mild polarity defects accompanied by moderate overproliferation, but the PDZ domains alone are insufficient to provide any Scrib function in mutant discs. We suggest a model in which Scrib, via the activity of the LRR, governs proliferation primarily by regulating apicobasal polarity.  相似文献   

5.
Maung SM  Jenny A 《Organogenesis》2011,7(3):165-179
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.  相似文献   

6.
《Organogenesis》2013,9(3):165-179
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.  相似文献   

7.
8.
Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.  相似文献   

9.
10.
11.
Keratinocyte growth factor (KGF)/fibroblast growth factor-7 (FGF-7) is a paracrine- and epithelium-specific growth factor produced by cells of mesenchymal origin. It acts exclusively through FGF-7 receptor (FGFR2/IIIb), which is expressed predominantly by epithelial cells, but not by fibroblasts, suggesting that it might function as a paracrine mediator of mesenchymal-epithelial interactions. KGF/FGF-7 plays an essential role in the growth of epithelial cells and is frequently overexpressed in cancers of epithelial origin such as pancreatic cancer, switching paracrine stimulation of KGF/FGF-7 to an autocrine loop. Less is known, however, about the signaling pathways by which KGF/FGF-7 regulates the response of epithelial cells. To delineate the signaling pathways activated by KGF/FGF-7 and examine cellular response to KGF/FGF-7 stimulation, we performed functional analysis of KGF/FGF-7 action. In this report, we show that KGF/FGF-7 activated nuclear factor kappaB (NF-kappaB), which in turn induced expression of VEGF, MMP-9, and urokinase-type plasminogen activator and increased migration and invasion of KGF/FGF-7-stimulated human pancreatic ductal epithelial cells. Expression of phosphorylation-defective IkappaBalpha (IkappaBalphaS32A,S36A), which blocked NF-kappaB activation, inhibited KGF/FGF-7-induced gene expression and cell migration and invasion. Our results demonstrate for the first time that KGF/FGF-7 induces NF-kappaB activation and that NF-kappaB plays an essential role in regulation of KGF/FGF-7-inducible gene expression and KGF/FGF-7-initiated cellular responses. Thus, these findings identify one signaling pathway for KGF/FGF-7-regulated cell migration and invasion and suggest that paracrine sources of KGF/FGF-7 are one of the malignancy-contributing factors from tumor stroma.  相似文献   

12.
Spatially distinct pools of the small GTPase Cdc42 were observed, but the major focus of research so far has been to investigate its signaling at the plasma membrane. We recently showed that the Golgi pool of Cdc42 is relevant for cell polarity and that it is regulated by GM130, a Golgi matrix protein. Loss of GM130 abrogated cell polarity and consistent with the notion that polarity is frequently impaired in cancer, we found that GM130 is downregulated in colorectal cancer. Whether the loss of GM130 solely affects polarity, or whether it affects other processes relevant for tumorigenesis remains unclear. In a panel of breast cancer cells lines, we investigated the consequences of GM130 depletion on traits of relevance for tumor progression, such as survival, proliferation, adhesion, migration and invasion. We show that cellular assays that depend on polarity, such as chemotaxis and wound scratch assays, are only of limited use to investigate the role of polarity modulators in cancer. Depletion of GM130 increases cellular velocity and increases the invasiveness of breast cancer cells, therefore supporting the view that alterations of polarity contribute to tumor progression.  相似文献   

13.
14.
Although recent progresses have unveiled the diverse in vivo functions of LKB1, detailed molecular mechanisms governing these processes still remain enigmatic. Here, we showed that Drosophila LKB1 negatively regulates organ growth by caspase-dependent apoptosis, without affecting cell size and cell cycle progression. Through genetic screening for LKB1 modifiers, we discovered the JNK pathway as a novel component of LKB1 signaling; the JNK pathway was activated by LKB1 and mediated the LKB1-dependent apoptosis. Consistently, LKB1-null mutant was defective in embryonic apoptosis and displayed a drastic hyperplasia in the central nervous system; these phenotypes were fully rescued by ectopic JNK activation as well as wild-type LKB1 expression. Furthermore, inhibition of LKB1 resulted in epithelial morphogenesis failure, which was associated with a decrease in JNK activity. Collectively, our studies unprecedentedly elucidate JNK as the downstream mediator of the LKB1-dependent apoptosis, and provide a new paradigm for understanding the diverse LKB1 functions in vivo.  相似文献   

15.
Etienne-Manneville S  Hall A 《Cell》2001,106(4):489-498
We describe here a signal transduction pathway controlling the establishment of mammalian cell polarity. Scratching a confluent monolayer of primary rat astrocytes leads to polarization of cells at the leading edge. The microtubule organizing center, the microtubule cytoskeleton, and the Golgi reorganize to face the new free space, and directed cell protrusion and migration specifically occur perpendicularly to the scratch. We show here that the interaction of integrins with extracellular matrix at the newly formed cell front leads to the activation and polarized recruitment of Cdc42, which in turn recruits and activates a cytoplasmic mPar6/PKCzeta complex. Localized PKCzeta activity, acting through the microtubule motor protein dynein, is required for all aspects of induced polarity in these cells.  相似文献   

16.
Human phosphatidylinositol-4-phosphate adaptor protein-2 (FAPP2) is well-known to function as a cytoplasmic lipid transfer protein during vesicle maturation. However, the expression and role of FAPP2 in tumor remain elusive. In this study, data from immunohistochemical assays displayed that FAPP2 was remarkably upregulated (57.8%) in 90 cases of colon cancer samples in contrast to their corresponding adjacent tissues. Disruption of FAPP2 by CRISPR/Cas9 technique in colon cancer cells led to an attenuated effect on cell growth analyzed by CCK8 and colony formation assays. Meanwhile, the tumorigenicity of FAPP2 downregulated cells also decreased in nude mice model. Accordantly, CCK8 assays also indicated that FAPP2 overexpression could promote colon cancer cell growth. In addition, dual luciferase reporter assays and western blot analyses revealed that Wnt/β-catenin signaling was involved in the FAPP2-regulated tumor cell growth. These findings suggest that FAPP2 could act as an oncogene in the regulation of tumor growth and may provide a new therapeutic target for human colon cancer.  相似文献   

17.
18.
Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.  相似文献   

19.
20.
肿瘤细胞侵袭研究进展   总被引:5,自引:0,他引:5  
肿瘤细胞侵袭和转移是癌医学和癌生物学最重要的难题,癌症主要因其肿瘤细胞的侵袭和转移而成为致命的疾病,虽然侵袭和转移的机制仍不清楚,但肿瘤细胞侵袭一直是研究热点,本文就近年来对肿瘤细胞侵袭研究的新进展进行综述,以期为寻找治疗肿瘤的新方案提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号