首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kind of affinity electrophoresis called functional affinity electrophoresis (FAEP) is a technique used to separate and/or capture proteins according to their functions in a native polyacrylamide gel. Protein A:immunoglobulin G, avidin:biotin, antibody:antigen, and concanavalin A:glycoprotein interactions are used to demonstrate this technique. Protein A, avidin, monoclonal anti-bovine serum albumin (BSA) antibody, and concanavalin A are embedded in distinct regions of a 7.5% native polyacrylamide gel. Some of each of the embedded proteins get covalently and/or noncovalently incorporated into the gel matrix network. Under electrophoresis conditions, these proteins do not show significant electrophoretic mobility or they migrate in a direction opposite to the protein analytes, as in avidin. We clearly observe that polyclonal anti-human myoglobin antibody, biotinylated insulin, BSA, and ovalbumin (glycoprotein) are captured and separated in distinct regions of a FAEP gel by protein A, avidin, monoclonal anti-BSA antibody, and concanavalin A, respectively.  相似文献   

2.
This study reports on the analysis of the lipolytic proteome of cultured human fat cells. We used specific affinity tags to detect and identify the lipolytic and esterolytic enzymes in human subcutaneous (Sc) and visceral (Visc) adipocytes. For this purpose, differentiated fat cells were incubated with a fluorescent suicide inhibitor followed by protein separation using one- or two-dimensional gel electrophoresis. After detection by fluorescence laser scanning, the labeled proteins were tryptically digested and peptides were identified by mass spectrometry. In addition, a biotinylated probe was used for specific enzyme labeling with subsequent avidin affinity isolation of the tagged proteins. Finally, we determined the quantitative differences in protein expression levels between subcutaneous and visceral adipocytes using differential activity-based gel electrophoresis (DABGE). We found that the lipase/esterase patterns of both cell types are very similar, except for some proteins that were only found in Sc cells. Two novel enzyme candidates identified in this study were overexpressed and characterized using biologically relevant glycerolipid substrates in vitro. Both of them showed pronounced hydrolytic activities on hydrophobic acylglycerols and therefore may be considered lipases. The physiological functions of the novel lipolytic proteins in vivo are currently subject to investigation.  相似文献   

3.
A two-dimensional immobilized metal affinity electrophoresis method is described here. In this method, ferric ions are immobilized in the second-dimensional polyacrylamide gel to extract the phosphoprotein β-casein from a mixture containing proteins with a broad range of pI and MW. Native 7.5–15% gradient tris-glycine gel with SDS tris-glycine gel running buffer are used so that proteins can be separated according to their molecular mass in the second dimension.  相似文献   

4.
Chaperonin 10 protein from Rattus norvegicus (Rat cpn10) has been reported to bind chaperonin 60 from Escherichia coli (GroEL) in an ATP-dependent manner. Chemically synthesized Rat cpn10 was immobilized in a defined orientation to agarose-bound monomeric avidin using a reversible biotinylated affinity label ( 1 ), attached to the Nα-terminal residue. The resulting affinity chromatographic matrix was then used to isolate binding proteins from a crude cell lysate. Following affinity separation the bound ligand and ligate was released by treatment with organic base. Rat cpn10 was prepared using a highly effective synthetic protocol involving HBTU/HOBt activation and capping with N-(2-chlorobenzyloxycarbonyloxy) succinimide to terminate unreacted amino groups. The biotinylated Fmoc-based molecule ( 1 ) was introduced specifically onto the Nα-terminal amino acid as the succinimidyl carbonate, before final cleavage and deprotection of side-chain protecting groups using a low-TFMSA/high-HF procedure. Crude biotinylated Rat cpn10 (Rat cpn10+ 1 ) was immobilized on monomeric avidin with a binding efficiency of approximately 75% and unlabelled truncated/capped impurities eluted off the column with buffer. The biotinylated Rat cpn10–avidin affinity matrix was then used to isolate GroEL from a crude cell lysate. The identity of the purified protein was confirmed by SDS–PAGE and binding to a specific anti-GroEL monoclonal antibody (MoAb). These results extend the applicability of the biotinylated label ( 1 ), providing a reversible non-covalent anchor for immobilization of peptide and protein ligands, thus simplifying isolation of ligates and enabling recovery of synthetic material under mild conditions. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
A simple method for detection of DNA-binding proteins is offered. These proteins can be revealed, following their electrophoretic separation in sodium dodecyl sulfate (SDS)-polyacrylamide gel containing labeled DNA, by washing the gel in buffer to remove SDS and to allow protein renaturation. Protein-free DNA is washed out, remaining in the DNA-binding proteins that restored their original characteristic. After autoradiography these proteins are seen as black bands (by one-dimensional gel electrophoresis) or spots (by two-dimensional gel electrophoresis) on a grey background. High sensitivity of the method is shown by using protein fractions of rat liver and a standard method.  相似文献   

6.
A comprehensive understanding of the mouse plasma proteome is important for studies using mouse models to identify protein markers of human disease. To enhance our analysis of the mouse plasma proteome, we have developed a method for isolating low-abundance proteins using a cysteine-containing glycopeptide strategy. This method involves two orthogonal affinity capture steps. First, glycoproteins are coupled to an azlactone copolymer gel using hydrazide chemistry and cysteine residues are then biotinylated. After trypsinization and extensive washing, tethered N-glycosylated tryptic peptides are released from the gel using PNGase F. Biotinylated cysteinyl-containing glycopeptides are then affinity selected using a monomeric avidin gel and analyzed by LC-MS/MS. We have applied the method to a proteome analysis of mouse plasma. In two independent analyses using 200 muL each of C57BL mouse plasma, 51 proteins were detected. Only 42 proteins were seen when the same plasma sample was analyzed by glycopeptides only. A total of 104 N-glycosylation sites were identified. Of these, 17 sites have hitherto not been annotated in the Swiss-Prot database whereas 48 were considered probable, potential, or by similarity - i.e., based on little or no experimental evidence. We show that analysis by cysteine-containing glycopeptides allows detection of low-abundance proteins such as the epidermal growth factor receptor, the Vitamin K-dependent protein Z, the hepatocyte growth factor activator, and the lymphatic endothelium-specific hyaluronan receptor as these proteins were not detected in the glycopeptide control analysis.  相似文献   

7.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

8.
A method which facilitates the rapid and quantitative electrophoretic transfer of proteins from gels not containing sodium dodecyl sulfate (SDS) to nitrocellulose membranes is described. The equilibration of non-SDS-polyacrylamide gel electrophoretic gels in a buffer containing SDS confers a net negative charge to the proteins present, presumably as a result of the formation of SDS-protein complexes. Proteins from gels equilibrated in the SDS buffer and then electroblotted in a Tris-glycine buffer at pH 8.3 are transferred with much greater efficiency than are proteins from untreated gels. The method has been shown to significantly enhance the electrophoretic transfer of polyoma viral proteins resolved in either acetic acid-urea or isoelectric-focusing gels to nitrocellulose membranes, and it is suggested that the method should have universal applicability to all gel electrophoresis systems currently employed. The proteins from isoelectric-focusing gels treated with SDS and transferred to nitrocellulose membranes were found to retain antigenicity to antisera prepared against either denatured or native viral proteins.  相似文献   

9.
Proteins in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS–PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays.  相似文献   

10.
A sensitive enzyme assay for biotin, avidin, and streptavidin   总被引:6,自引:0,他引:6  
Reciprocal enzyme assays are described for the vitamin biotin and for the biotin-binding proteins avidin and streptavidin. The assays are based on the following steps: (a) biotinylated bovine serum albumin is adsorbed onto microtiter plates; (b) streptavidin (or avidin) is bound to the biotin-coated plates; (c) biotinylated enzyme (in this case alkaline phosphatase) is then interacted with the free biotin-binding sites on the immobilized protein. For biotin assay, competition between the free vitamin and the biotinylated enzyme is carried out between steps (b) and (c). The method takes advantage of the four biotin-binding sites which characterize both avidin and streptavidin. The method is extremely versatile and accurate over a concentration range exceeding three orders of magnitude. The lower limits of detection are approximately 2 pg/ml (0.2 pg/sample) for biotin and less than 100 ng/ml (10 ng/sample) for either avidin or streptavidin.  相似文献   

11.
DNA labeled with the chemically cleavable biotinylated nucleotide Bio-12-SS-dUTP was chromatographed on biotin cellulose affinity columns using either avidin or streptavidin as the affinity reagent. Although both proteins were equally effective in binding the Bio-12-SS-DNA to the affinity resin, two important differences were found. First, nonbiotinylated DNA bound to avidin, but not to streptavidin, in buffers containing 50 mM NaCl. Second, Bio-12-SS-DNA was released much more slowly from the streptavidin affinity column than from the avidin column upon washing with buffer containing dithiothreitol. This difficulty in reducing the disulfide bond of Bio-12-SS-DNA bound to streptavidin is most likely due to steric protection of the disulfide bond by the protein. This conclusion is supported by our finding that DNA labeled with another biotinylated nucleotide analog, Bio-19-SS-dUTP, is rapidly and efficiently recovered from a streptavidin column. In Bio-19-SS-DNA, the distance between the disulfide bond and the biotin group is approximately 10 A greater than that in Bio-12-SS-DNA. Therefore, Bio-19-SS-dUTP and streptavidin form the basis of an efficient affinity system for the isolation and subsequent recovery of biotinylated DNA in the presence of low ionic strength buffers.  相似文献   

12.
Although polyacrylamide gel has no affinity to lithium dodecyl sulfate (LDS) at 25 degrees C, the gel maximally binds 17 mg of LDS per gram dry weight at 4 degrees C. When polyacrylamide gel electrophoresis is carried out at 4 degrees C in the presence of LDS instead of sodium dodecyl sulfate (SDS) using a continuous buffer system, migration of proteins with lower molecular weight is accelerated as a result of the deficiency of LDS in the frontal region of the gel. When the gel is saturated with LDS, electrophoresis in the presence of LDS at 4 degrees C shows a resolution higher than that of SDS-polyacrylamide gel electrophoresis at 25 degrees C.  相似文献   

13.
Sodium dodecylsulfate (SDS) can be removed from protein by gel electrophoresis. This principle is useful for separating protein bands which are close to each other in SDS gel electrophoresis. We accomplished this by “two-stage” gel electrophoresis. In this system, SDS gel electrophoresis was carried out as the first step. Gel electrophoresis was then continued (after replacing the buffer) without SDS. SDS was then eluted from the gel into the lower buffer during the second stage. Separation of the subunits was significantly improved relative to simple SDS gel electrophoresis.  相似文献   

14.
A gel absorption-based sample preparation method for shotgun analysis of membrane proteome has been developed. In this new method, membrane proteins solubilized in a starting buffer containing a high concentration of sodium dodecyl sulfate (SDS) were directly entrapped and immobilized into gel matrix when the membrane protein solution was absorbed by the vacuum-dried polyacrylamide gel. After the detergent and other salts were removed by washing, the proteins were subjected to in-gel digestion and the tryptic peptides were extracted and analyzed by capillary liquid chromatography coupled with tandem mass spectrometry (CapLC-MS/MS). The results showed that the newly developed method not only avoided the protein loss and the adverse protein modifications during gel embedment but also improved the subsequent in-gel digestion and the recovery of tryptic peptides, particularly the hydrophobic peptides, thereby facilitating the identification of membrane proteins, especially the integral membrane proteins. Compared with the conventional tube-gel digestion method, the newly developed method increased the numbers of identified membrane proteins and integral membrane proteins by 25.0% and 30.2%, respectively, demonstrating that the method is of broad practicability in gel-based shotgun analysis of membrane proteome.  相似文献   

15.
In‐gel digestion followed by LC/MS/MS is widely used for the identification of trace amounts of proteins and for the site‐specific glycosylation analysis of glycoproteins in cells and tissues. A major limitation of this technique is the difficulty in acquiring reliable mass spectra for peptides present in minute quantities and glycopeptides with high heterogeneity and poor hydrophobicity. It is considered that the SDS used in electrophoresis can interact with proteins noncovalently and impede the ionization of peptides/glycopeptides. In this study, we report an improved in‐gel digestion method to acquire reliable mass spectra of a trace amount of peptides/glycopeptides. A key innovation of our improved method is the use of guanidine hydrochloride, which forms complexes with the residual SDS molecules in the sample. The precipitation and removal of SDS by addition of the guanidine hydrochloride was successful in improving the S/N of peptides/glycopeptides in mass spectra and acquiring a more comprehensive MS/MS data set for the various glycoforms of each glycopeptide.  相似文献   

16.
Monomeric forms of avidin and streptavidin [(strept)avidin] have many potential applications. However, generation of monomeric (strept)avidin in sufficient quantity is a major limiting factor. We report the successful intracellular production of an improved version of monomeric streptavidin (M4) in a soluble and functional state at a level of approximately 70 mg/L of an Escherichia coli shake flask culture. It could be affinity purified in one step using biotin agarose with 70% recovery. BIAcore biosensor analysis using biotinylated bovine serum albumin confirmed its desirable kinetic properties. Two biotinylated proteins with different degrees of biotinylation (5.5 and 1 biotin per protein) pre-mixed with cellular extracts from Bacillus subtilis were used to examine the use of M4-agarose in affinity purification of protein. Both biotinylated proteins could be purified in high purity with 75-80% recovery. With the mild elution and matrix regeneration conditions, the M4-agarose had been reused four times without any detectable loss of binding capability. The relatively high-level overproduction and easy purification of M4, excellent kinetic properties with biotinylated proteins and mild procedure for protein purification make vital advancements in cost-effective preparation of monomeric streptavidin affinity matrix with desirable properties for purification of biotinylated molecules.  相似文献   

17.
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin-agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques.  相似文献   

18.
The synthesis of four biotinylated analogues of Substance P is described. The affinities of these analogues and of their complexes with avidin for the 125I-Bolton Hunter Substance P binding sites on rat brain synaptosomes were determined. While these biotinylated peptides complexed to avidin retain a good biological activity on the guinea-pig ileum bioassay, we observe a net decrease in their binding affinities in the central nervous system. The present study confirms that in the central nervous system the higher affinity is related to the N-terminal tetrapeptide and establishes that the free amino group (N-alpha-Arg and N-epsilon-Lys) are not essential in the binding.  相似文献   

19.
The combined use of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry has become a powerful and widely used tool in proteome studies. Following separation by electrophoresis, proteins can be transferred to an inert support such as polyvinylidene fluoride (PVDF) or nitrocellulose (NC) for the visualization of individual or specific classes of proteins by immunochemical detection methods. We developed a method that allows the mass spectrometric analysis of peptides derived from proteins detected by Western blotting on PVDF. Proteolysis buffer containing either dimethyl formamide (DMF) or Triton X-100 to recover peptides amenable to mass spectrometry was investigated. Although either one can be used, the buffer containing DMF required less sample handling prior to mass spectrometry. The approach was tested using commercially available proteins and serine-phosphorylated proteins from an HEK-293 nuclear extract.  相似文献   

20.
We report a new and facile extraction method of proteins and polypeptides in the range of 100 to 1 kDa previously separated by high-resolution SDS/polyacrylamide-gel electrophoresis. Proteins and polypeptides obtained by chemical or proteolytic cleavage of proteins can directly be applied to high-sensitivity N-terminal amino-acid sequence analysis by gas-phase sequencing. The Coomassie Blue-stained protein bands are eluted from the gel slices with 0.1 M sodium acetate buffer, pH 8.5, 0.1% SDS in high yield and directly applied to the filter disc of the gas-phase sequencer. The superior efficiency for the isolation of proteins and polypeptides from polyacrylamide gels for microsequencing has been documented by a quantitative comparison of the procedure described here and the favoured electroblot-transfer method using 14C-labeled marker proteins. This highly efficient isolation has been successfully reproduced and applied to the analysis of a variety of proteins and peptides with rather divergent physical properties, particularly to hydrophobic peptides isolated from SDS/polyacrylamide gels. The electrophoretic transfer onto activated glass filters. Immobilon membranes (polyvinylidene-difluoride membranes), siliconized or chemically activated glass fiber supports can be omitted. The method considerably simplifies and speeds up the isolation, and improves the sensitivity as compared to the electroblotting procedures due to the reproducibly high recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号