首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretory proteins encoded by genes expressed in the oesophageal gland cells of plant-parasitic nematodes have key roles in nematode parasitism of plants. Two venom allergen-like protein cDNAs (designated hg-vap-1 and hg-vap-2)were isolated from Heterodera glycines gland cell cDNA libraries. Both cDNAs hybridised to genomic DNA of H. glycines in Southern blots. The hg-vap-1 cDNA contained an open reading frame encoding 215 amino acids with the first 25 amino acids being a putative secretion signal. The hg-vap-2 cDNA contained an open reading frame encoding 212 amino acids with the first 19 amino acids being a putative secretion signal. Genes of hg-vap-1 and hg-vap-2 contained four introns, which ranged in size from 44 to 574 bp, and five exons ranging in size from 43 to 279 bp. In situ hybridisation analyses showed that mRNAs of both vap genes accumulated specifically in the subventral gland cells of H. glycines during parasitism. The gland cell-specific expression and presence of predicted secretion signal peptides in both VAPs suggest that these proteins are secreted from the nematode and may play a role in the infection of host plants by this parasite.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Experiments were established in field microplots to examine the association between Heterodera glycines and the blue form of Fusarium solani in sudden death syndrome of soybean (SDS). Foliar disease symptoms occurred on more plants per plot, appeared 3 to 7 days earlier, and were more severe on plants grown in plots infested with F. solani + H. glycines than on those inoculated with F. solani only. Yields were suppressed only in treatments that included the nematode. Numbers of H. glycines cysts and second-stage juveniles were significantly lower in plots infested with F. solani + H. glycines than with the nematode alone. Fusarium solani was able to infect cysts and eggs.  相似文献   

11.
Summary We previously described the isolation and the nucleotide sequence of a nuclear gene from sorghum (NMDHI; 4.6 kb) encoding the NADP-malate dehydrogenase. Further analysis led us to identify a second homologous gene (NMDH II; 4.8 kb) located within the same 12.3 kb genomic clone (LM17); these two genes are tandemly organized, in direct orientation. This second gene was entirely sequenced and comparison with the first gene showed that the positions on the 14 exons and 13 introns are conserved in both genes. The analysis of the genomic organization and copy number in the Sorghum vulgare genome revealed that there are no additional homologues and there is only one copy each of NMDH I and NMDH II. The isolation of two different cDNA clones in a previous work suggested that both genes were probably expressed. Analysis of specific mRNA accumulation during the greening process using synthetic oligonucleotide probes showed that the NMDH I gene is induced in the presence of light while the NMDH II gene seems to be constitutively expressed at low level.Abbreviations Cab chlorophyll a/b binding protein - CTAB N-cetyl-N,N,N-trimethyl-ammonium bromide - NADP-MDH NADP-dependent dehydrogenase - RbcS ribulose-1,5-bisphosphate carboxylase small subunit - SSC 0.15 M NaCl, 0.015 M sodium citrate pH 7.6  相似文献   

12.
13.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

14.
15.
16.
17.
The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system.  相似文献   

18.
19.
A 6.5 kb region from the genome of the cyanobacterium Spirulina platensis was cloned using as a probe the Escherichia coli gene for ribosomal protein S2. Sequence analysis revealed, in this region, the presence of the gene for ribosomal protein S2 and part of the gene for the elongation factor Ts (EF-Ts). The arrangement rpsB-spacer-tsf resembles that reported for E. coli. The deduced amino acid sequences of the platensis S2 and EF-Ts show significant homology with the E. coli counterparts.  相似文献   

20.

Background

Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles.

Results

A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3’-hydroxylase (F3’H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties.

Conclusions

The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1784-x) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号