首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosystem I contains several peripheral membrane proteins that are located on either positive (luminal) or negative (stromal or cytoplasmic) sides of thylakoid membranes of chloroplasts or cyanobacteria. Incorporation of two peripheral subunits into photosystem I of the cyanobacterium Synechocystis species PCC 6803 was studied using a reconstitution system in which radiolabeled subunits II (PsaD) and IV (PsaE) were synthesized in vitro and incubated with the isolated thylakoid membranes. After such incubation, the subunits were found in the membranes and were resistant to digestion with proteases and removal by 2 molar NaBr. All of the radioactive proteins incorporated in the membrane were found in the photosystem I complex. The subunit II was assembled specifically into cyanobacterial thylakoid membranes and not into Escherichia coli cell membranes or thylakoid membranes isolated from spinach. The assembly process did not require ATP or proton motive force, and it was not stimulated by ATP. The assembly of subunits II and IV into thylakoid membranes isolated from the strain AEK2, which lacks the gene psaE, was increased two- to threefold. The incorporation of subunit II was 15 to 17 times higher in the thylakoids obtained from the strain ADK3 in which the gene psaD has been inactivated. However, assembly of subunit IV in the same thylakoids was reduced by 65%, demonstrating that the presence of subunit II is required for the stable assembly of subunit IV. Large deletions in subunit II prevented its incorporation into thylakoids and assembly into photosystem I, suggesting that the overall conformation of the protein rather than a specific targeting sequence is required for its assembly into photosystem I.  相似文献   

2.
PsaD is a peripheral stromal-facing subunit of photosystem I (PSI), a multisubunit complex of the thylakoid membranes. PsaD plays a major role in both the function and assembly of PSI. Past studies with radiolabeled PsaD indicated that PsaD is able to assemble in vitro specifically into the PSI complex. To unravel the mechanism by which this assembly takes place, the following steps were taken. (i) Mature PsaD of spinach and PsaD of the prokaryotic caynobacterium Mastigocladus laminosus, both bearing a six-histidine tag at their C-termini, were overexpressed in Escherichia coli and purified to homogeneity. (ii) The purified recombinant protein was introduced into the isolated PSI complex. (iii) Following incubation, the PsaD that assembled into PSI was separated from the nonassembled PsaD by a sucrose gradient. Differential Western blot analysis was used to determine whether the native and the recombinant PsaD were present as free or assembled proteins of the PSI complex. Antibodies that can recognize only the recombinant PsaD (anti-his) or both the native and recombinant PsaD (anti-PsaD) were used. The findings indicated that an exchange mechanism enables the assembly of a newly introduced PsaD into PSI. The latter replaces the PsaD subunit that is present in situ within the complex. In vivo studies that followed the assembly of PsaD in Chlamydomonas reinhardtii cells supported this in vitro-characterized exchange mechanism. In C. reinhardtii, in the absence of synthesis and assembly of new PSI complexes, newly synthesized PsaD assembled into pre-existing PSI complexes.  相似文献   

3.
The present study characterizes the assembly and organization of Photosystem I (PSI) complex, and its individual subunits into the thylakoid membranes of the thermophilic cyanobacterium, Mastigocladus laminosus. PSI is a multiprotein complex that contains peripheral as well as integral subunits. Hence, it serves as a suitable model system for understanding the formation and organization of membrane protein complexes. In the present study, two peripheral cytosol facing subunits of PSI, namely, PsaD and PsaE were overexpressed in E. coli and used for assembly studies. The gene encoding PsaK, an integral membrane spanning subunit of PSI, was cloned and the deduced amino acid sequence revealed PsaK to have two transmembrane alpha-helices. The characterization of the in vitro assembly of the peripheral subunits, PsaD and PsaE, as well as of the integral subunit, PsaK, was performed by incubating each subunit with thylakoids isolated from Mastigocladus laminosus. All three subunits studied were found to assemble into the thylakoids in a spontaneous mechanism, showing no requirement for cytosolic factors or NTP's (nucleotide 5'-triphosphate). Nevertheless, further characterization of the assembly of PsaK revealed its membrane integration to be most efficient at 55 degrees C. The associations and protein-protein interactions between different subunits within the assembled PSI complex were directly quantified by measurements performed using the BIACORE technology. The preliminary results indicated the existence of specific interaction between PsaD and PsaE, and revealed a very high binding affinity between PsaD and the PSI electron acceptor ferridoxin (Kd = 5.8 x 10(-11) M). PsaE has exhibited a much lower binding affinity for ferridoxin (Kd = 3.1 x 10(-5) M), thereby supporting the possibility of PsaE being one of the subunits responsible for the dissociation of ferridoxin from the PSI complex.  相似文献   

4.
We studied assembly of the PsaE subunit of photosystem I into photosynthetic membranes of cyanobacterial mutant strains that lack specific photosystem I subunits. Radiolabeled PsaE was incubated with photosynthetic membranes, and their binding and assembly were assayed by resistance to removal by chaotropic agents and proteolytic digestion. PsaE incorporated into the wild-type membranes was resistant to these treatments. In the absence of PsaD, it was resistant to proteolytic digestion, but was removed by NaBr. When the membranes were isolated from a mutant strain in which the psaF and psaJ genes have been inactivated, PsaE assembled in vitro could not be removed. PsaE could associate with the membranes of the strain DF in which the psaD, psaJ and psaF genes have been mutated. However, the radiolabeled PsaE associated with these membranes was removed both by the proteolytic as well as by the chaotropic agents. Characterization of PsaE present in vivo revealed similar results. These observations suggest that PsaD and PsaF/J may interact with PsaE and stabilize it in the photosystem I complex.  相似文献   

5.
PsaD is a peripheral protein on the reducing side of photosystem I (PS I). We expressed the psaD gene from the thermophilic cyanobacterium Mastigocladus laminosus in Escherichia coli and obtained a soluble protein with a polyhistidine tag at the carboxyl terminus. The soluble PsaD protein was purified by Ni-affinity chromatography and had a mass of 16716 Da by MALDI-TOF. The N-terminal amino acid sequence of the overexpressed PsaD matched the N-terminal sequence of the native PsaD from M. laminosus. The soluble PsaD could assemble into the PsaD-less PS I. As determined by isothermal titration calorimetry, PsaD bound to PS I with 1.0 binding site per PS I, the binding constant of 7.7x10(6) M-1, and the enthalpy change of -93.6 kJ mol-1. This is the first time that the binding constant and binding heat have been determined in the assembly of any photosynthetic membrane protein. To identify the surface-exposed domains, purified PS I complexes and overexpressed PsaD were treated with N-hydroxysuccinimidobiotin (NHS-biotin) and biotin-maleimide, and the biotinylated residues were mapped. The Cys66, Lys21, Arg118 and Arg119 residues were exposed on the surface of soluble PsaD whereas the Lys129 and Lys131 residues were not exposed on the surface. Consistent with the X-ray crystallographic studies on PS I, circular dichroism spectroscopy revealed that PsaD contains a small proportion of alpha-helical conformation.  相似文献   

6.
V Pandini  A Aliverti  G Zanetti 《Biochemistry》1999,38(33):10707-10713
Photosystem I of higher plants functions in photosynthesis as a light-driven oxidoreductase producing reduced ferredoxin. Its peripheral subunit PsaD has been identified as the docking site for ferredoxin I. With the aim of elucidating the structure-function relationship and the role of this subunit, a recombinant form of the spinach protein was produced by heterologous expression in Escherichia coli. The PsaD protein was synthesized in soluble form and purified to homogeneity. The interaction of the PsaD subunit with ferredoxin I was investigated using three different approaches: chemical cross-linking between the two purified proteins in solution, affinity chromatography of the PsaD subunit on a ferredoxin-coupled resin, and titration with ferredoxin of the protein fluorescence of the subunit. All these studies indicated that the isolated PsaD in solution has a definite conformation and maintains the ability to bind ferredoxin I with high affinity and specificity. The Kd value of the complex of PsaD and ferredoxin is in the nanomolar range, which is consistent with reported Km values for ferredoxin I photoreduction by thylakoid membranes. The ionic strength dependence of the K(d) suggests that the protein-protein interaction is at least partially electrostatic in nature. Nevertheless, none of the glutamate residues of the acidic cluster of residues 92-94 of ferredoxin I, which have been reported to be involved in the interaction with the subunit, seems to be essential for PsaD binding, as borne out by experiments using ferredoxin I mutants in positions 92-94.  相似文献   

7.
Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive ‘plastids’, and the proteins related to PS I were examined. The intrinsic light-harvesting chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both ‘green’ lineages and cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
V P Chitnis  A Ke    P R Chitnis 《Plant physiology》1997,115(4):1699-1705
The PsaD subunit of photosystem I (PSI) is a peripheral protein that provides a docking site for ferredoxin and interacts with the PsaB, PsaC, and PsaL subunits of PSI. We used site-directed mutagenesis to determine the function of a basic region in PsaD of the cyanobacterium Synechocystis sp. PCC 6803. We generated five mutant strains in which one or more charged residues were altered. Western blotting showed that replacement of lysine (Lys)-74 with glutamine or glutamic acid led to a substantial decrease in the level of PsaD in the membranes. The mutant PSI complexes showed reduced NADP+ photoreduction activity mediated by ferredoxin; the decrease in activity correlated with the reduced level of PsaD. Using protein synthesis inhibitors we showed that the degradation rates of the mutant and wild-type PsaD were similar, indicating a defect in the assembly of the mutant protein. Treatment of the mutant PSI complexes with a different concentration of NaI showed that the mutations decreased affinity between PsaD and the transmembrane components of PSI. With glutaraldehyde, the mutant and wild-type PsaD proteins could be cross-linked with PsaC, but the PsaD-PsaL cross-linked product was reduced drastically when arginine-72, Lys-74, and Lys-76 were mutated simultaneously. These studies demonstrate that the basic residues in the central region of PsaD, especially Lys-74, are crucial in the assembly of PsaD into the PSI complex.  相似文献   

9.
In photosystem I (PSI) of oxygenic photosynthetic organisms the psaC polypeptide, encoded by the psaC gene, provides the ligands for two [4Fe-4S] clusters, FA and FB. Unlike other cyanobacteria, two different psaC genes have been reported in the cyanobacterium Synechocystis 6803, one (copy 1) with a deduced amino acid sequence identical to that of tobacco and another (copy 2) with a deduced amino acid sequence similar to those reported for other cyanobacteria. Insertion of a gene encoding kanamycin resistance into copy 2 resulted in a photosynthesis-deficient strain, CDK25, lacking the PsaC, PsaD and PsaE polypeptides in isolated thylakoid membranes, while the PsaA/PsaB and PsaF subunits were found. Growth of the mutant cells was indistinguishable from that of wild-type cells under light-activated heterotrophic growth (LAHG). A reversible P700+ signal was detected by EPR spectroscopy in the isolated thylakoids during illumination at low temperature. Under these conditions, the EPR signals attributed to FA and FB were absent in the mutant strain, but a reversible Fx signal was present with broad resonances at g=2.079, 1.903, and 1.784. Addition of PsaC and PsaD proteins to the thylakoids gave rise to resonances at g=2.046, 1.936, 1.922, and 1.880; these values are characteristic of an interaction-type spectrum of FA - and FB -. In room-temperature optical spectroscopic analysis, addition of PsaC and PsaD to the thylakoids also restored a 30 ms kinetic transient which is characteristic of the P700+ [FA/FB]- backreaction. Expression of copy 1 was not detected in cells grown under LAHG and under mixotrophic conditions. These results demonstrate that copy 2 encodes the PsaC polypeptide in PSI in Synechocystis 6803, while copy 1 is not involved in PSI; that the PsaC polypeptide is necessary for stable assembly of PsaD and PsaE into PSI complex in vivo; and that PsaC, PsaD and PsaE are not needed for assembly of PsaA-PsaB dimer and electron transport from P700 to Fx.  相似文献   

10.
The X-ray structure of Photosystem I (PS I) from Synechococcus elongatus was recently solved at 2.5A resolution (PDB entry 1JB0). It provides a structural model for the stromal subunits PsaC, PsaD and PsaE, which comprise the "stromal ridge" of PS I. In a separate set of studies the three-dimensional solution structures of the unbound, recombinant PsaC (PDB entry 1K0T) and PsaE (PDB entries 1PSF, 1QP2 and 1GXI) subunits were solved by NMR. The PsaC subunit of PS I is a small (9.3 kDa) protein that harbors binding sites for two [4Fe-4S] clusters F(A) and F(B), which are the terminal electron acceptors in PS I. Comparison of the PsaC structure in solution with that in the X-ray structure of PS I reveals significant differences between them which are summarized and evaluated here. Changes in the magnetic properties of [4Fe-4S] centers F(A) and F(B) are related to changes in the protein structure of PsaC, and they are further influenced by the presence of PsaD. Based on experimental evidence, three assembly stages are analyzed: PsaC(free), PsaC(only), PsaC(PS I). Unbound, recombinant PsaD, studied by NMR, has only a few elements of secondary structure and no stable three-dimensional structure in solution. When PsaD is bound in PS I, it has a well-defined three-dimensional structure. For PsaE the three-dimensional structure is very similar in solution and in the PS I-bound form, with the exception of two loop regions. We suggest that the changes in the structures of PsaC and PsaD are caused by the sequential formation of multiple networks of contacts between the polypeptides of the stromal ridge and between those polypeptides and the PsaA/PsaB core polypeptides. The three-dimensional structure of the C(2)-symmetric F(X)-binding loops on PsaA and PsaB were also analyzed and found to be significantly different from the binding sites of other proteins that contain interpolypeptide [4Fe-4S] clusters. The aim of this work is to relate contact information to structural changes in the proteins and to propose a model for the assembly of the stromal ridge of PS I based on this analysis.  相似文献   

11.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

12.
The manganese-stabilizing protein PsbO is associated with the luminal side of thylakoids close to the redox-active Mn4Ca cluster at the catalytically active site of photosystem II (PSII). PsbO is believed to increase the efficiency of oxygen evolution and to stabilize the Mn4Ca cluster against photoinhibition. Using small-angle X-ray scattering, we investigated the low-resolution structure of wild-type spinach PsbO and that of chimeric spinach PsbO fused with maltose-binding protein. Small-angle X-ray scattering data revealed that both proteins are monomeric in solution, and that plant and cyanobacterial PsbO have similar structures. We show a highly efficient expression system that allows recombinant production of the active wild type and the chimeric PsbO from spinach and cyanobacteria, with yields compatible with biophysical and structural studies. The binding of spinach PsbO fused with maltose-binding protein to PSII depleted of extrinsic subunits (PSII-ΔpsbO,P,Q) was confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The reconstituted PSII was shown to have similar oxygen evolution rates as obtained with wild-type spinach PsbO.  相似文献   

13.
The synthesis and assembly of photosystem II (PS II) proteins of spinach chloroplasts were investigated in three different in vitro systems, i.e., protein synthesis in isolated chloroplasts (in organello translation), read-out translation of thylakoid-bound ribosomes, and transport of translation products from spinach leaf polyadenylated RNA into isolated chloroplasts. Polyacrylamide gel electrophoresis of labeled thylakoid polypeptides in the presence of sodium dodecyl sulfate revealed that the first two systems were capable of synthesizing the reaction center proteins of PS II (47 and 43 kDa), the herbicide-binding protein, and cytochrome b559. The reaction center proteins synthesized in organello were shown to bind chlorophyll and to assemble properly into the PS II core complex. One of the reaction center proteins translated by the thylakoid-bound ribosomes (47 kDa) was also found to be integrated in situ into the complex but was lacking bound chlorophyll. Incorporation of radioactivity into the three extrinsic proteins of the oxygen-evolution system (33, 24, and 18 kDa) was detected only when intact chloroplasts were incubated with the translation products from polyadenylated RNA, showing that these proteins are coded for by nuclear DNA. The occurrence of a precursor polypeptide 6 kDa larger than the 33-kDa protein was immunochemically detected in the translation products.  相似文献   

14.
In light-, but not in dark-grown spinach seedlings, the mRNAs for the nuclear-encoded photosystem I subunits D, F and L are associated with polyribosomes and this association is prevented by the application of 3-(3',4'-dichlorophenyl)-1,1'-dimethyl urea (DCMU), an inhibitor of the photosynthetic electron transport. To identify the cis-elements which are responsible for this regulation, we generated a series of chimeric PsaD constructs and tested them in transgenic tobacco. The spinach PsaD 5'-untranslated region is sufficient to confer light- and photosynthesis-dependent polyribosome association onto the uidA reporter gene, while the tobacco PsaD 5'-untranslated region directs constitutive polyribosome association. These results are discussed with regard to signals from photosynthetic electron flow which control processes in the cytoplasm.  相似文献   

15.
Recent results obtained by electron microscopic and biochemical analyses of greening Chlamydomonas reinhardtii y1 suggest that localized expansion of the plastid envelope is involved in thylakoid biogenesis. Kinetic analyses of the assembly of light-harvesting complexes and development of photosynthetic function when degreened cells of the alga are exposed to light suggest that proteins integrate into membrane at the level of the envelope. Current information, therefore, supports the earlier conclussion that the chloroplast envelope is a major biogenic structure, from which thylakoid membranes emerge. Chloroplast development in Chlamydomonas provides unique opportunities to examine in detail the biogenesis of thylakoids.Abbreviations Rubisco ribulose bisphosphate carboxylase/oxygenase - CAB Chl a/b-binding (proteins) - Chlide chlorophyllide - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - Pchlide protochlorophyllide  相似文献   

16.
The nucleotide sequence was determined for the psaD gene of a thermophilic cyanobacterium, Synechococcus vulcanus, which encoded the PsaD subunit (Subunit II) of the Photosystem I reaction center complex. Except for some differences in the peripherals, the nucleotide sequence of the gene encoding PsaD was identical to that of another thermophilic cyanobacterium Synechococcus elongatus reported previously. Relationship between these primary structures and thermostability was also discussed.Abbreviations ORF open reading frame - PS I Photosystem I - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis This paper is dedicated to commemorate the late Professor D.I. Arnon with whom the senior author (T.H.) spent five years from 1974 to 1979 as his last postdoctoral fellow at the Department of Cell Physiology, University of California, Berkeley.The sequence data presented here have been submitted to DDBJ/EMBL/GenBank under the accession number D17355.  相似文献   

17.
The dephosphorylation of seven phosphoproteins associated with Photosystem II or its chlorophyll a/b antenna in spinach thylakoids, was characterised. The rates were found to fall into two distinct groups. One, rapidly dephosphorylated, consisted of the two subunits (25 and 27 kD) of the major light harvesting complex of Photosystem II (LHC II) and a 12 kD polypeptide of unknown identity. A marked correlation between the dephosphorylation of these three phosphoproteins, strongly suggested that they were all dephosphorylated by the same enzyme. Within this group, the 25 kD subunit was consistently dephosphorylated most rapidly, probably reflecting its exclusive location in the peripheral pool of LHC II. The other group, only slowly dephosphorylated, included several PS II proteins such as the D1 and D2 reaction centre proteins, the chlorophyll-a binding protein CP43 and the 9 kD PS II-H phosphoprotein. No dephosphorylation was observed in either of the two groups in the absence of Mg2+-ions. Dephosphorylation of the two LHC II subunits took place in both grana and stroma-exposed regions of the thylakoid membrane. However, deposphorylation in the latter region was significantly more rapid, indicating a preferential dephosphorylation of the peripheral (or mobile) LHC II. Dephosphorylation of LHC II was found to be markedly affected by the redox state of thiol-groups, which may suggest a possible regulation of LHC II dephosphorylation involving the ferredoxin-thioredoxin system.Abbreviations CP 43 43 kD chlorophyll a- binding protein - D1 and D2 reaction centre proteins of PS II - LHC II light-harvesting complex of PS II - LHC II-25 25 kD subunit of LHC II - LHC II-27 27 kD subunit of LHC II - NEM N-ethylmaleimide - PP2C protein phosphatase 2C - PS II-H psb H gene product  相似文献   

18.
SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K(+) channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K(out) channels. Deletion mutants and chimeric proteins generated from SKOR and the K(in) channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K(T) domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K(out) alpha-subunits did not assemble with K(in) alpha-subunits because of the absence of interaction between their assembly sites.  相似文献   

19.
H Koike  K Mamada  M Ikeuchi  Y Inoue 《FEBS letters》1989,244(2):391-396
The O2-evolving photosystem II core complex was isolated from a thermophilic cyanobacterium, Synechococcus vulcanus Copeland. Analysis by SDS-polyacrylamide gel electrophoresis revealed that the complex contained at least seven low-molecular-mass proteins in addition to the well characterized CP47 apoprotein, CP43 apoprotein, 33 kDa extrinsic protein, D1 protein, D2 protein and large subunit of cytochrome b-559. The separation of these low-molecular-mass proteins were very similar between cyanobacterial and higher plant PS II. N-terminal sequences of the 6.5 kDa and 3.9 kDa proteins of cyanobacterial core complex were determined after blotting to a polyvinylidene difluoride membrane. The sequence of the 6.5 kDa protein showed high homology with an internal sequence of plant psbH gene product, so-called 10 kDa phosphoprotein, but did not conserve the Thr residue which is specifically phosphorylated in plants. The sequence of the 3.9 kDa protein corresponded to the K protein of higher plants (mature form of psbK gene product). These results indicate that the products of both psbH and psbK genes are present in cyanobacterial PS II as well as being associated with the O2-evolving core complex.  相似文献   

20.
It has been suggested that lack of specialized molecular chaperone function(s) in Escherichia coli may account for the fact that although E. coli cells transformed with plant Rubisco genes synthesize the Rubisco subunit polypeptides, the active enzyme fails to assemble. If so, co-expression of plant chaperone and Rubisco genes might permit plant Rubisco assembly in E. coli. Introduction of genes encoding plant chaperonin polypeptides has been shown to enhance the capacity of E. coli to assemble active cyanobacterial Rubisco. We now report that co-expression of plant Rubisco and chaperonin genes affected the solubility and stability of Rubisco large subunit polypeptides, however, neither the assembled oligomeric protein nor Rubisco enzyme activity was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号