首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Plasma transthyretin. Tissue sites of degradation and turnover in the rat   总被引:1,自引:0,他引:1  
Transthyretin (TTR) is involved in the plasma transport of both retinol and thyroid hormones. TTR is synthesized in the liver and choroid plexus, and in small amounts in several other tissues. A study was conducted to determine the tissue sites of degradation and turnover of TTR in the rat. The study employed TTR labeled with tyramine cellobiose (TC) and the trapped ligand method. Samples of purified rat TTR were labeled either with 125I-TC or directly with 131I. A mixture of the two labeled TTRs was injected intravenously into six rats. Blood samples were collected via a venous catheter for kinetic (turnover) analysis. After 24 or 48 h, the rats were killed, and 23 different tissues/organs were assayed as possible sites of TTR degradation. Derivatization of TTR with TC did not appreciably alter TTR plasma kinetics. Plasma turnover data were best fit by a three-pool model. The mean fractional turnover of plasma TTR was 0.15/h, and of total body TTR 0.04/h. The major sites of TTR degradation were the liver (36-38% of total body TTR degradation, almost all in hepatocytes), muscle (12-15%), and skin (8-10%). Tissues that were sites of 1-8% of body TTR degradation included kidneys, adipose tissue, testes, and the gastrointestinal tract. Less than 1% of total TTR degradation occurred in the other tissues examined. A second study was conducted in which labeled TTR was injected intraventricularly into the cerebrospinal fluid in order to explore the degradation of TTR of choroid plexus origin. The kinetics of the appearance and disappearance of such labeled TTR in plasma were physiologically reasonable, with an estimated turnover of cerebrospinal fluid TTR of the order of 0.33/h. The major tissue sites of degradation of labeled TTR injected into cerebrospinal fluid and into plasma were approximately the same. No specific degradation of TTR was found in the nervous system tissues. The most active organs of TTR catabolism, per gram wet weight, were liver and kidneys. These studies demonstrate that many tissues participate in TTR turnover and degradation; the studies provide quantitative information about the tissue sites of TTR catabolism.  相似文献   

4.
We have previously reported that atrial natriuretic factor (ANF) increased neuronal norepinephrine (NE) uptake and reduced basal and evoked neuronal NE release. Changes in NE uptake and release are generally associated to modifications in the synthesis and/or turnover of the amine. On this basis, the aim of the present work was to study ANF effects in the rat hypothalamus on the following processes: endogenous content, utilization and turn-over of NE; tyrosine hydroxylase (TH) activity; cAMP and cGMP accumulation and phosphatidylinositol hydrolysis. Results showed that centrally applied ANF (100 ng/microl/min) increased the endogenous content of NE (45%) and diminished NE utilization. Ten nM ANF reduced the turnover of NE (53%). In addition, ANF (10 nM) inhibited basal and evoked (with 25 mM KCl) TH activity (30 and 64%, respectively). Cyclic GMP levels were increased by 10 nM ANF (100%). However, neither cAMP accumulation nor phosphatidylinositol breakdown were affected in the presence of 10 nM ANF. The results further support the role of ANF in the regulation of NE metabolism in the rat hypothalamus. ANF is likely to act as a negative putative neuromodulator inhibiting noradrenergic neurotransmission by signaling through the activation of guanylate cyclase. Thus, ANF may be involved in the regulation of several central as well as peripheral physiological processes such as cardiovascular function, electrolyte and fluid homeostasis, endocrine and neuroendocrine synthesis and secretion, behavior, thirst, appetite and anxiety that are mediated by central noradrenergic activity.  相似文献   

5.
This in vitro study evaluated the basal 42K turnover and response to norepinephrine (NE) in the thoracic aorta removed from Dahl salt-sensitive (S) and salt-resistant (R) rats. Five-week-old S and R rats were placed on either a high-salt (HS) or low-salt (LS) diet. After 5 weeks of the diet, systolic blood pressure, aortic weight/length ratio, and the cellular pool of K+ were elevated in the S-HS group only. In contrast, the steady state turnover of 42K, the NE ED50, and the response to a supramaximal dose of NE were the same in both groups of salt-sensitive and salt-resistant rats. These results suggest that, despite the presence of a greatly elevated systolic blood pressure and evidence of aortic hypertrophy, the intrinsic electrolyte metabolism of the vascular smooth muscle in the Dahl hypertensive rat is the same as that of the Dahl normotensive rat.  相似文献   

6.
7.
8.
This investigation determined the effect of different rates of dehydration, induced by ingesting different volumes of fluid during prolonged exercise, on hyperthermia, heart rate (HR), and stroke volume (SV). On four different occasions, eight endurance-trained cyclists [age 23 +/- 3 (SD) yr, body wt 71.9 +/- 11.6 kg, maximal O2 consumption 4.72 +/- 0.33 l/min] cycled at a power output equal to 62-67% maximal O2 consumption for 2 h in a warm environment (33 degrees C dry bulb, 50% relative humidity, wind speed 2.5 m/s). During exercise, they randomly received no fluid (NF) or ingested a small (SF), moderate (MF), or large (LF) volume of fluid that replaced 20 +/- 1, 48 +/- 1, and 81 +/- 2%, respectively, of the fluid lost in sweat during exercise. The protocol resulted in graded magnitudes of dehydration as body weight declined 4.2 +/- 0.1, 3.4 +/- 0.1, 2.3 +/- 0.1, and 1.1 +/- 0.1%, respectively, during NF, SF, MF, and LF. After 2 h of exercise, esophageal temperature (Tes), HR, and SV were significantly different among the four trials (P < 0.05), with the exception of NF and SF. The magnitude of dehydration accrued after 2 h of exercise in the four trials was linearly related with the increase in Tes (r = 0.98, P < 0.02), the increase in HR (r = 0.99, P < 0.01), and the decline in SV (r = 0.99, P < 0.01). LF attenuated hyperthermia, apparently because of higher skin blood flow, inasmuch as forearm blood flow was 20-22% higher than during SF and NF at 105 min (P < 0.05). There were no differences in sweat rate among the four trials. In each subject, the increase in Tes from 20 to 120 min of exercise was highly correlated to the increase in serum osmolality (r = 0.81-0.98, P < 0.02-0.19) and the increase in serum sodium concentration (r = 0.87-0.99, P < 0.01-0.13) from 5 to 120 min of exercise. In summary, the magnitude of increase in core temperature and HR and the decline in SV are graded in proportion to the amount of dehydration accrued during exercise.  相似文献   

9.
Human subjects were exposed for two (or three) sessions to the same runs of 103 dB (A) pink noise-steps alternating with 40 dB (A) low level pink noise. From one session to the following their cardiovascular responses seem to achieve an adjustment. Differences between them depend on two features: (1) some of them achieve a negative feedback reaction from the second exposure, when in others such a reaction is delayed until the third exposure; (2) parallelism or opposition between evolutions of heart rate and arterial blood pressure respectively.  相似文献   

10.
11.
12.
13.
14.
Norepinephrine turnover and energetic efficiency studies were conducted in three groups of male Sprague-Dawley rats placed on low iron diets for 5 weeks on weaning. Iron-deficient rats had significant anemia (hematocrit less than 20%) and growth retardation relative to pair-fed and ad libitum fed controls who received the same diet plus weekly iron dextran injections. Energetic efficiency over a 7-day period was nearly 30% less in anemic animals. This was associated with significantly higher rates of norepinephrine turnover in brown adipose tissue (110%) and heart (330%) with significant hypertrophy in both tissues. There was no difference in body composition in ad libitum groups. Plasma triiodothyronine and thyroxine were reduced by 37% in iron deficients compared to controls. Thus 39% increase in caloric requirements in iron deficiency is associated with increased sympathetic and perhaps thermogenic activity in brown adipocytes.  相似文献   

15.
The purpose of this study was to determine cardiovascular β-adrenergic responses during hypothermia. In the present study, we used isoproterenol (Iso), a nonselective, potent β-adrenoceptor agonist, well known for its positive chronotropic and inotropic pharmacologic actions at normothermia. Rats were instrumented to measure mean arterial pressure (MAP) and left ventricular (LV) pressure–volume changes using a Millar pressure–volume conductance catheter. Core temperature was manipulated from 37 (normothermia) to 24 °C (hypothermia) and back to 37 °C (rewarming) using both internal and external heat exchangers. During cooling at each temperature (33, 30, 27, and 24 °C), central hemodynamic variables and MAP were measured while intravenously infusing Iso (doses of 1.7, 5, 10, and 20 ng/min). Seven animals underwent all phases of the protocol. At normothermia Iso infusion resulted in a significant, dose-dependent increase in heart rate (HR), stroke volume (SV), cardiac output (CO), LV dP/dtmax (left ventricular maximum derivative of systolic pressure over time) but no change in MAP. During cooling Iso infusion caused no dose-dependent change in any of the hemodynamic variables. After rewarming, baseline HR and LV dP/dtmax were increased, whereas SV was significantly reduced when compared with their pre-hypothermic baseline values. This study shows that physiological cardiovascular responses mediated by the β-adrenoceptor are significantly diminished during core hypothermia.  相似文献   

16.
Exposure to air ions has been reported to influence serotonin (5HT), although critical reviews of these studies and previous measurements in our laboratory of the concentration, release, and utilization of brain 5HT indicate that neither the data nor the interpretations of the data are particularly convincing. Measurements of other possibly relevant neurotransmitter systems--norepinephrine (NE) and dopamine (DA)--were made in brain regions selected because of their importance in the modulation of brain functions relating to motivation, arousal, endocrine function, and motor activity, all responses that have been reported to be influenced by air ion exposure. Results indicate that exposure of male Holtzman rats to high concentrations (5.0 X 10(5)/cm3) of positive or negative air ions or to DC electric fields (3.0 kV/m) for periods up to 66 h failed to affect the concentration of NE or DA significantly in any of the brain regions.  相似文献   

17.
To examine the effects of repetitive bouts of heavy exercise on the maximal activities of enzymes representative of the major metabolic pathways and segments, 13 untrained volunteers [peak aerobic power (Vo(2 peak)) = 44.3 +/- 2.3 ml.kg(-1).min(-1)] cycled at approximately 91% Vo(2 peak) for 6 min once per hour for 16 h. Maximal enzyme activities (V(max), mol.kg(-1).protein.h(-1)) were measured in homogenates from tissue extracted from the vastus lateralis before and after exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). For the mitochondrial enzymes, exercise resulted in reductions (P < 0.05) in cytochrome-c oxidase (COX, 14.6%), near significant reductions in malate dehydrogenase (4.06%; P = 0.06) and succinic dehydrogenase (4.82%; P = 0.09), near significant increases in beta-hydroxyacyl-CoA dehydrogenase (4.94%; P = 0.08), and no change in citrate synthase (CS, 2.88%; P = 0.37). For the cytosolic enzymes, exercise reduced (P < 0.05) V(max) in hexokinase (Hex, 4.4%), creatine phosphokinase (9.0%), total phosphorylase (13.5%), phosphofructokinase (16.6%), pyruvate kinase (PK, 14.1%) and lactate dehydrogenase (10.7%). Repetition-dependent reductions (P < 0.05) in V(max) were observed for CS (R1, R2 > R16), COX (R1, R2 > R16), Hex (1R, 2R > R16), and PK (R9 > R16). It is concluded that heavy exercise results in transient reductions in a wide range of enzymes involved in different metabolic functions and that in the case of selected enzymes, multiple repetitions of the exercise reduce average V(max).  相似文献   

18.
The dorsal and median raphe nuclei in rats were electrically stimulated and blood pressure and heart rate were recorded. Stimulation of each raphe nucleus caused an increase in blood pressure without affecting heart rate. The size of the increase in blood pressure depended upon the stimulus-intensity.Significant increases were already obtained with 5 sec. trains of 0.3 msec., 200 μA stimuli given at a frequency of 50 Hz. The increases in blood pressure could be obtained with electrodes within the raphe nuclei.Pretreating rats with para-chlorophenylalanine (pCPA, 100 mg/kg.day for 3 days) significantly diminished the increases in blood pressure obtained during electrical stimulation of the median raphe nucleus. However, similar pretreatment did not affect blood pressure rises induced by dorsal raphe stimulation.These data are discussed in relation to the role of central serotoninergic mechanisms in cardiovascular control.  相似文献   

19.
To clarify whether hyperinsulinemia accelerates sympathetic nervous system (SNS) activity, norepinephrine (NE) turnover, a reliable indicator of SNS activity, was measured in the interscapular brown adipose tissue (IBAT) and heart of hyperinsulinemic yellow KK and normoinsulinemic C57BL control mice at 12 weeks of age. The yellow KK mice were more obese and had higher levels of plasma glucose (about 2.3 times) and of plasma insulin (about 24 times) than did the control mice. In IBAT, the rate of NE turnover following blockade of NE synthesis with alpha-methyl-p-tyrosine (alpha-MPT) was significantly slower in yellow KK mice than in C57BL mice, although in heart, no significant difference between both groups was observed in NE turnover. These results suggest that hyperinsulinemia dose not always increase NE turnover, and furthermore that the reduced NE turnover in IBAT of yellow KK mice may be one of the important factors in the development of obesity of this animal, as it is recognized that brown adipose tissue is a main effector of diet-induced thermogenesis and its defect or absence would predispose to obesity.  相似文献   

20.
Administration of choline chloride i.p. to rats causes a dose-dependent increase in the brain concentration of the neurotransmitter, acetylcholine (ACh). This increase is maximal (22% after a 60-mg/kg dose) 40 minutes after injection. These observations suggest that precursor availability may influence brain ACh synthesis, just as brain tryptophan and tyrosine levels have previously been shown to control the synthesis of brain serotonin and catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号