共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wang YK Rigat KL Sun JH Gao M Roberts SB 《Archives of biochemistry and biophysics》2008,470(2):146-152
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes. 相似文献
4.
Watashi K Ishii N Hijikata M Inoue D Murata T Miyanari Y Shimotohno K 《Molecular cell》2005,19(1):111-122
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies. 相似文献
5.
Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA-dependent RNA polymerase 下载免费PDF全文
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp. 相似文献
6.
Kim YC Russell WK Ranjith-Kumar CT Thomson M Russell DH Kao CC 《The Journal of biological chemistry》2005,280(45):38011-38019
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis. 相似文献
7.
8.
Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase 下载免费PDF全文
Wang QM Hockman MA Staschke K Johnson RB Case KA Lu J Parsons S Zhang F Rathnachalam R Kirkegaard K Colacino JM 《Journal of virology》2002,76(8):3865-3872
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data. 相似文献
9.
Mosley RT Edwards TE Murakami E Lam AM Grice RL Du J Sofia MJ Furman PA Otto MJ 《Journal of virology》2012,86(12):6503-6511
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus. 相似文献
10.
Ago H Adachi T Yoshida A Yamamoto M Habuka N Yatsunami K Miyano M 《Structure (London, England : 1993)》1999,7(11):1417-1426
11.
Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase 总被引:2,自引:0,他引:2
Johnson RB Sun XL Hockman MA Villarreal EC Wakulchik M Wang QM 《Archives of biochemistry and biophysics》2000,377(1):129-134
The RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene has been expressed as a nonfusion protein in bacterial cells and purified to homogeneity using sequential chromatographic columns. The purified NS5B protein exhibited RNA-dependent RNA polymerase activity using poly(A) template and the K(m) and V(max) were determined as 8.4 microM and 1976 pmol/mg-min, respectively. This full-length NS5B protein exhibited much stronger binding affinity toward the 30-mer poly(G) than other homopolymeric RNAs of the same size. For the first time, we demonstrate that the HCV NS5B was able to bind various ribonucleotides. Using a panel of oligonucleotides varying in length, we studied the NS5B catalytic efficiency and proposed the size of the NS5B active site to be 8-10 nucleotides. The multifunctional nature of NS5B protein is also discussed and compared with other viral RNA polymerases. 相似文献
12.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) initiates RNA synthesis in vivo by a de novo mechanism. In vitro, however, the HCV RdRp can initiate de novo or extend from a primed template. A novel beta-loop near the RdRp active site was previously found to prevent the use of primed templates. We found that, in addition to the beta-loop, the C-terminal tail of the HCV RdRp and the de novo initiation GTP are required to exclude the use of primed-templates. GTP binding to the NTPi site of the HCV RdRp orchestrates the participation of other structures. The interactions of the beta-loop, C-terminal tail, and GTP provide an elegant solution to ensure de novo initiation of HCV RNA synthesis. 相似文献
13.
14.
Antonysamy SS Aubol B Blaney J Browner MF Giannetti AM Harris SF Hébert N Hendle J Hopkins S Jefferson E Kissinger C Leveque V Marciano D McGee E Nájera I Nolan B Tomimoto M Torres E Wright T 《Bioorganic & medicinal chemistry letters》2008,18(9):2990-2995
Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with 1–10 mM binding affinity (KD) were iteratively optimized to give leads with 200 nM biochemical activity and low μM cellular activity in a Replicon assay. 相似文献
15.
Schmidt-Mende J Bieck E Hugle T Penin F Rice CM Blum HE Moradpour D 《The Journal of biological chemistry》2001,276(47):44052-44063
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention. 相似文献
16.
17.
18.
The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment 总被引:2,自引:0,他引:2 下载免费PDF全文
Ivashkina N Wölk B Lohmann V Bartenschlager R Blum HE Penin F Moradpour D 《Journal of virology》2002,76(24):13088-13093
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) belongs to a class of membrane proteins termed tail-anchored proteins. Here, we show that the HCV RdRp C-terminal membrane insertion sequence traverses the phospholipid bilayer as a transmembrane segment. Moreover, the HCV RdRp was found to be retained in the endoplasmic reticulum (ER) or an ER-derived modified compartment both following transient transfection and in the context of a subgenomic replicon. An absolutely conserved GVG motif was not essential for membrane insertion but possibly provides a docking site for transmembrane protein-protein interactions. These findings have important implications for the functional architecture of the HCV replication complex. 相似文献
19.
Crotty et al. recently proposed the primary antiviral action of ribavirin to be that of a potent RNA mutagen [Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379]. Here we investigate the effect of ribavirin triphosphate (RTP) on RNA synthesis catalyzed by a full-length hepatitis C virus (HCV) RNA polymerase in vitro. HCV polymerase can use RTP as a nucleotide substrate in a template-dependent manner, incorporating it opposite a pyrimidine (C or U) template residue, but not a purine (A or G). Kinetic analysis revealed that incorporation of ribavirin monophosphate (RMP) across from C is 3 times more efficient catalytically than that across from U, as determined by the k(cat)/K(m) parameter. The efficiency of RMP incorporation, however, is 50-100 fold lower than that of the natural NMP. RMP incorporation does not lead to termination of RNA chain synthesis, as evidenced by the ability of the polymerase to extend its RNA product many nucleotides beyond the site of RMP incorporation. However, multiple-RMP incorporation at low GTP concentrations induced the formation of stalled elongation complexes, particularly at the template region containing consecutive C residues. Most, but not all, such elongation blocks can be relieved by the re-addition of GTP. When ribavirin is present in the RNA template, pyrimidine (but neither purine nor ribavirin) monophosphate is incorporated opposite ribavirin, but at an exceedingly low catalytic efficiency (200-3000-fold lower) compared to the efficiencies of those templated by A or G. Consequently, the level of RNA synthesis on a ribavirin-containing template is significantly reduced. These findings suggest that ribavirin not only is mutagenic but also interferes with HCV polymerase-mediated RNA synthesis. 相似文献
20.
Yoshida T Kondoh M Ojima M Mizuguchi H Yamagishi Y Sakamoto N Yagi K 《Nucleic acids research》2011,39(10):e64
The efficient delivery of the hepatitis C virus (HCV) RNA subgenomic replicon into cells is useful for basic and pharmaceutical studies. The adenovirus (Ad) vector is a convenient and efficient tool for the transduction of foreign genes into cells in vitro and in vivo. However, an Ad vector expressing the HCV replicon has never been developed. In the present study, we developed Ad vector containing an RNA polymerase (pol) I-dependent expression cassette and a tetracycline-controllable RNA pol I-dependent expression system. We prepared a hybrid promoter from the tetracycline-responsive element and the RNA pol I promoter. Ad vector particles coding the hybrid promoter-driven HCV replicon could be amplified, and interferon, an inhibitor of HCV replication, reduced HCV replication in cells transduced with the Ad vector coding HCV replicon. This is the first report of the development of an Ad vector-mediated HCV replicon system. 相似文献